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Abstract

This paper studies how violations of structural assumptions like expected

utility and exponential discounting can be connected to basic rationality vio-

lations, even though these assumptions are typically regarded as independent

building blocks in decision theory. A reference-dependent generalization of

behavioral postulates captures preference shifts in various choice domains.

When reference points are fixed, canonical models hold; otherwise, reference-

dependent preference parameters (e.g., CARA coefficients, discount factors)

give rise to “non-standard” behavior. The framework allows us to study risk,

time, and social preferences collectively, where seemingly independent anoma-

lies are interconnected through the lens of reference-dependent choice.
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1 Introduction

In various branches of economics, multiple assumptions come together to form the

basis of an economic model, and interesting findings often emerge from the un-

foreseen interplay among these assumptions. The empirical failure of these models,

however, need not lie in the substance of each individual assumption but is rooted

in their indiscriminate applications.

In individual decision-making, the standard model of choice faces two distinct

strands of empirical challenges. First, structural assumptions like the expected utility

form and exponential discounting are violated in simple choice experiments, such

as the Allais paradox and present bias behavior. Second, and separately, studies

show that choices are often affected by reference points, resulting in behavior that

violates basic rationality assumptions like the weak axiom of revealed preferences

(WARP). With few exceptions, these two classes of departures have been studied

separately, and independently for each domain of choice, leading to the develop-

ment of models that attempt to explain one phenomenon in isolation of the others.1

This paper introduces a unified framework that studies how the two types of

violations may be in part related to one another, stemming from a common source.

The central approach is motivated by a simple observation: Suppose preference

parameters (e.g., utility functions capturing risk attitude and discount factors rep-

resenting degree of patience) are influenced by reference alternatives, then even

decision makers who typically adhere to normative postulates (e.g., maximize ex-

ponentially discounted expected utility) would every so often violate rationality

assumptions and structural assumptions—when reference alternatives change. On

the other hand, choices made under the same reference would fully align with both

1Risk domain: rank-dependent utility (Quiggin, 1982), quadratic utility (Machina, 1982), dis-
appointment aversion (Gul, 1991), betweenness preferences (Chew, 1983; Fishburn, 1983; Dekel,
1986), and cautious expected utility (Cerreia-Vioglio, Dillenberger, and Ortoleva, 2015) maintain
basic rationality. Time domain: various models of hyperbolic discounting (Loewenstein and Pr-
elec, 1992; Frederick, Loewenstein, and O’donoghue, 2002), quasi-hyperbolic discounting (Phelps
and Pollak, 1968; Laibson, 1997), and related generalizations (Chakraborty, 2021; Chambers,
Echenique, and Miller, 2023) maintain basic rationality. Others: Kőszegi and Rabin (2007) and
Ortoleva (2010) use reference dependency to explain structural violations. Hara, Ok, and Riella
(2019) maintain structural assumption but relaxes basic rationality. In richer settings: Bordalo,
Gennaioli, and Shleifer (2012); Lanzani (2022) relax (state-independent) Independence and (state-
independent) Transitivity to study correlated lotteries and Noor and Takeoka (2015) relax Inde-
pendence (for ex-ante preference) and WARP (for ex-post choices) to study two-stage self-control
problems.
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postulates. Thus, while the two types of assumptions are conventionally treated

as separate building blocks of a choice model—introduced as independently mo-

tivated axioms—their deviations are intrinsically connected by systematic shifts in

preferences.

To illustrate, a myriad of documented anomalies, including the Allais paradox,

suggests that decision makers exhibit increased risk aversion when presented with

safer options (Allais, 1990; Wakker and Deneffe, 1996; Herne, 1999; Bleichrodt and

Schmidt, 2002; Andreoni and Sprenger, 2011). While this behavior contradicts the

expected utility theory, it aligns with the expected utility framework when coupled

with context-dependent utility functions that vary in concavity. This observation

motivates the model in the risk domain.

c (A) = argmax
p∈A

∑
x

p (x)ur (x) (1.1)

Standard expected utility applies when the safest alternative, which acts as the

reference r, is fixed; but when it changes, a safer reference leads to a more concave

utility function ur, reflecting a systematic increase in risk aversion.

This observation is not exclusive to expected utility. In time preferences, present

bias individuals who are less patient in short-term decisions violate exponential

discounting (Laibson, 1997; Frederick, Loewenstein, and O’donoghue, 2002; Ben-

habib, Bisin, and Schotter, 2010; Chakraborty, 2021). However, their behav-

ior could be consistent with the exponential discounting form when paired with

context-dependent discount factors that capture changing time preferences.

c (A) = argmax
(x,t)∈A

δtru (x) (1.2)

When a problem offers sooner payments, it alters the reference point r, prompting

the decision maker to use a lower discount factor δr that reflects increased impa-

tience. Again, changes in preferences are systematic along a certain order, and

behavior is otherwise standard.

For social preferences, it is well-documented in economics and psychology that

the very same individuals display different degree of altruism in different choice

settings, for example when a balanced split of reward is available than when it is

not (Ainslie, 1992; Rabin, 1993; Nelson, 2002; Fehr and Schmidt, 2006; Sutter,
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2007). These context-dependent preferences could be consistent with

c (A) = argmax
(x,y)∈A

x+ vr (y) (1.3)

where increased altruism is captured by a utility from sharing, vr (·), that systemat-

ically increases when more-equitable splits become the reference.

This paper aims to examine these behaviors as one collective, addressing three

key questions: (1) Under what conditions do non-standard behaviors across various
choice domains permit such representations? (2) What do they have in common? and

(3) How does their systematic departure from canonical models inform the relationship
between rationality assumptions and structural assumptions?

It turns out that, although these behavioral anomalies are typically investigated

in largely separate and domain-specific studies, the behavioral content of the pro-

posed models is underpinned by a “meta” axiomatic foundation referred to as

Reference Dependence (RD). RD is the key innovation of this paper, introducing a

reference-dependent approach that can generalize a large class of behavioral pos-

tulates or axioms, be it “rational” or “structural”. When applied to the risk, time,

and social domains, it yields three complete characterizations that resonate with

one another.

To illustrate the idea, Section 2 applies RD only to rationality assumption by

requiring that in every (finite) choice set, at least one alternative would preserve

WARP among choice behavior from its subsets. Intuitively, if the failure of rational-

ity is caused by reference dependence, then rationality should continue to hold at

least for choice sets that share the same reference. It turns out that this postulate

characterizes a two-step choice process: A reference order is maximized to identify

the reference alternative r (A) of a choice problem A. The reference alternative

then determines a utility function that the decision maker maximizes. Intuitively,

the context of a choice problem is captured by the alternative that ranks highest

in the reference order and the underlying context-dependent preference is subse-

quently determined.

c (A) = argmax
z∈A

Ur(A) (z) (1.4)

It has not gone unnoticed that Equations 1.1, 1.2, and 1.3 are special cases of

Equation 1.4, sharing two essentially components: (i) a reference order and (ii)
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reference-dependent preference parameters. It is also apparent that basic rational-

ity—the assumption that one persistent utility function is being maximized—can

fail, which makes the proposed explanations not particularly appealing, at least un-

til the recent accumulation of theoretical interest and empirical evidence against

basic rationality itself.

It turns out that, barring technical challenges, the axiomatic characterization

of each of these behaviors requires little more than adapting RD to their domain-

specific normative postulates. For risk preference, Risk-RD preserves both WARP

(rationality axiom) and von Neumann-Morgenstern’s Independence (structural ax-

iom) when the safest alternative is maintained. For time preference, Time-RD pre-

serves normative postulates WARP (rationality axiom) and Stationarity (structural

axiom) when the earliest available payment is fixed. For social preference, Social-

RD calls for consistency with WARP (rationality axiom) and Quasi-linearity (struc-

tural axiom) when the most-balanced options coincide. The underlying intuition

is universal: Upholding the reference point ensures the validity of all normative

postulates, so that violations of structural assumptions—whatever they are and

whatever the domain—are linked to reference dependent preferences manifested

in basic rationality violations.2 A second axiom, which does not involve reference

points, captures systematic changes in preferences by requiring that choices cannot

become more risk loving / more patient / more selfish when a subset of the original

choice set is considered.

Notwithstanding its intuitiveness, this approach does not fully align with the

conventional wisdom in decision theory (and economics in general) where assump-

tions are weakened one at a time. Relaxing both rationality postulates and struc-

tural postulates leads to an instinctive concern about admitting too wide a range of

behavior. However, the joint generalization introduced by RD exhibits greater dis-

cipline than an independent generalization, and it contributes to three interrelated

insights that span all three domains, forming the core of this study.

First, the models predict how structural anomalies traditionally detected in bi-

nary comparisons (such as the Allais paradox and present bias behavior) will man-

ifest as WARP violations when larger choice sets are considered, providing testable

predictions that could bridge the two largely separate empirical literature. To illus-

trate, suppose Option 1 is a later payment and it is chosen over a sooner payment

2The generality of this exercise is demonstrated in Online Appendix B.
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Option 2, but the opposite decision emerges when both options are symmetrically

advanced, an anomaly known as present bias.3 Then, it is predicted that adding a

particular unchosen alternative Option 3 to the original comparison could switch

the choice to Option 2, causing a WARP violation; similar observations link the

common ratio effect in risk preferences to WARP violations. They resonate with the

motivation of the present framework in suggesting that deviations from standard

models may arise from changing preferences rather than being a mere failure of

structural assumptions. This plausible connection, however, is obscured in stud-

ies that assume basic rationality, thereby missing the opportunity to draw insights

from behavior in non-binary choice sets that could offer a fundamentally different

perspective on traditional anomalies.

Second, the models suggest how basic rationality and structural postulates can

be inextricably linked, even though they are typically regarded as independent

building blocks of individual decision-making. Proposition 1 shows that introduc-

ing just WARP or just Independence to the risk model immediately implies standard

expected utility behavior, even though these postulates must be jointly imposed in

a general setting. This means a decision maker who has any utility representation

will also have an expected utility representation; similar results are obtained for

time and social domains. The proposed models thus capture distinct non-standard

behavior when contrasted with a substantial body of the literature that only gen-

eralizes structural assumptions. For example, even though many models can ex-

plain the Allais paradox and present bias behavior, choice behavior from prominent

models like rank-dependent utility, quadratic utility, disappointment aversion, be-

tweenness, cautious expected utility, hyperbolic discounting, and quasi-hyperbolic

discounting overlap with mine only in the special case where behavior is fully stan-

dard.4 That is, for non-standard decision makers, our models provide mutually

exclusive predictions.

Third, the innovation in this exercise is due crucially to an underexplored gen-

eralization of structural assumptions forbidden by traditional adherence to ratio-

nality assumptions. To see this, consider the risk domain and suppose lottery p is

preferred to lottery q. The von Neumann-Morgenstern’s Independence condition

3This behavior violates Stationarity, the axiom responsible for exponential discounting, which
requires a consistent preference between two options even when the decision is revisited at later
point in time.

4See Footnote 1 for references.
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requires their common mixtures to have the same preference order, meaning that

pαs is preferred to qαs.5 Although a generalization of Independence loosens this

requirement, WARP makes it impossible to discuss how pαs is preferred to qαs in

some choice sets while the opposite holds in others. Relaxing WARP immediately

allows for this kind of generalization and paves the way for a context-dependent

implementation of structural postulates. This paper presents one of many possible

demonstrations and, perhaps counter-intuitively, shows that weakening both kinds

of postulates could bring us “closer” to canonical models. Similar limitations are

present when a (complete) preference relation serves as the primitive, which might

explain why this approach has not received much attention.

While the three observations are formulated within the scope of ordered refer-

ence, they might make a case for the comprehensive examination of conceptually

different behavior that complement foundational groundwork already established

by isolated investigations. Perhaps the examination of individual decision-making

rightly began with a theoretical decomposition of a complex behavior into key com-

ponents—encompassing conceptually distinct notions like “rationality axioms” and

“structural axioms”—to focus our studies and interpretations. But the natural pro-

gression now, knowing that each of these components fails to some extent, entails

a joint investigation of these theoretical constructs.

Related literature is next. Section 2 introduces the basic framework and RD. Sec-

tions 3-5, the main parts of this paper, take the unified framework to risk, time, and

social domains; they introduce axioms, provide representation theorems, study im-

plications, and discuss evidence. Section 6 concludes. Key proofs are in Appendix A.

Technical results and omitted proofs are relegated to Online Appendix B.

1.1 Related literature

The engagement of reference alternatives relates to the extensive literature on

reference-dependent preferences, originating from the seminal work of Kahneman

and Tversky (1979) on loss aversion and initially explored under the assumption

that reference points are directly observed.6 Subsequently, the scope of mechanisms

5Lottery pαs refers to the (compound) lottery generated by mixing lottery p with probability
α and lottery s with probability (1− α). Independence says the preference between pαs and qαs
should be the same as the preference between p and q, since they differ only by a common term.

6And relatedly, Tversky and Kahneman (1991); Kahneman, Knetsch, and Thaler (1991).

7



involving exogenous reference points has broadened beyond the realm of gain-loss

utility, e.g., general status quo bias (Masatlioglu and Ok, 2005, 2014), ambiguity

aversion (Ortoleva, 2010), wishful thinking (Kovach, 2020), and categorical think-

ing (Ellis and Masatlioglu, 2022).7

A new way to study reference points was popularized by Kőszegi and Rabin

(2006) where endogenous reference points capture seemingly reference-dependent

behavior even though reference points are not directly observed. These studies

encompass both objective reference (Kivetz, Netzer, and Srinivasan, 2004; Orhun,

2009; Bordalo, Gennaioli, and Shleifer, 2013; Tserenjigmid, 2019) and subjective

reference (Kőszegi and Rabin, 2006; Ok, Ortoleva, and Riella, 2015; Freeman,

2017). The present paper falls into this category and explores a novel use of endoge-

nous reference to proxy for domain-specific contexts and govern domain-specific

preference shifts.

Although the understudied link between rationality assumptions and structural

assumptions forms the core of this paper, the framework can be applied to the

generic choice domain where only rationality assumptions are considered. In this

case, the model and its behavioral implications coincide with Rubinstein and Salant

(2006)’s Triggered Rationality.8 That same model is also studied in Kıbrıs, Masatli-

oglu, and Suleymanov (2023) and Giarlotta, Petralia, and Watson (2023) using a

different axiom that essentially says “if dropping x in the presence of y causes a

WARP violation, then dropping y in the presence of x cannot”. Their axiom is an

appealing alternative when applied only to rationality violations, as it cannot be

extended to structural assumptions like Independence and Stationarity.9

More broadly, theories that systematically apply to different domains of choice

include, among others, loss aversion (Kahneman and Tversky, 1979; Kőszegi and

Rabin, 2006), attraction effect (Huber, Payne, and Puto, 1982), compromise ef-

fect (Simonson, 1989), salience (Bordalo, Gennaioli, and Shleifer, 2012, 2013),
7Other work related to status quo bias includes Rubinstein and Zhou (1999); Sagi (2006);

Apesteguia and Ballester (2009); Dean, Kıbrıs, and Masatlioglu (2017).
8Ravid and Steverson (2021) studies the same behavior under a model of bad temptation.
9Let p′, q′ be common mixtures of p, q. Using notation

{
p, q

}
to denote “p is chosen from the

choice set {p, q}”, the behavior
{
p, q, p′, q′

}
,
{
p, q, p′

}
,
{
p, q, q′

}
,
{
p, p′, q′

}
,
{
q, p′, q′

}
,
{
p, q

}
,
{
p, p′

}
,{

p, q′
}

,
{
q, p′

}
,
{
q, q′

}
,
{
p′, q′

}
satisfies Kıbrıs, Masatlioglu, and Suleymanov (2023)’s Single Rever-

sal even after modifying it to consider Independence violation as a reversal, but there is no reference
alternative in {p, q, p′, q′} because

{
p, q, p′, q′

}
and

{
p, q

}
violate WARP whereas

{
p, q, p′, q′

}
and{

p′, q′
}

violate Independence. Axiom 3.2 rules out this behavior.
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and focusing (Kőszegi and Szeidl, 2013). These models consider evaluations of

multi-attributes alternatives that are affected by the attributes of available alterna-

tives, some of which later generalized as categorical thinking (Ellis and Masatlioglu,

2022). They provide valuable insights that help us understand how psychological

and attention factors can influence economic decisions by affecting our perception

of an alternative.

To this end, Ellis and Masatlioglu (2022)’s study may be the closest to mine,

since they also consider reference points and explore applications in various choice

settings. Their study focuses on the endogenous formation of categories due to

exogeneously given reference points, and when two alternatives are assigned to

different categories, they are evaluated differently and potentially result in a pref-

erence reversal. The key mechanism that connects reference and preference is thus

categorization. In contrast, the present framework considers endogenous reference

points, uses the functional forms of standard models to evaluate alternatives, and

captures deviations using changes in preference parameters. Kovach (2020)’s wish-

ful thinking lies in between the two approaches; a decision maker’s subjective belief

depends on exogeneously given status quo (the reference point), but she is other-

wise standard in maximizing subjective expected utility.

In terms of characterization, Reference Dependence (RD) offers new tools. First,

it is known that the equivalence between canonical axioms and canonical mod-

els breaks down when data is limited or incomplete; this technical issue emerges

as choice problems are partitioned into reference-dependent subsets.10 Instead

of strengthening axioms (Houthakker, 1950; Echenique, Imai, and Saito, 2020;

de Clippel and Rozen, 2021) or embracing more general models (Dubra, Mac-

cheroni, and Ok, 2004; Manzini and Mariotti, 2008; Evren, 2014; Hara, Ok, and

Riella, 2019), RD exploits reference formation to impart adequate structure to each

subset of behavior so that a standard representation emerges. The method bears

qualitative similarity to Ke and Chen (2022)’s weak local independence, which char-

acterizes local expected utility using local compliance of canonical Independence.

10See Samuelson (1948) and Aumann (1962). For example, if B does not contain all doubletons
and tripletons, then a choice correspondence on B that satisfies WARP (and Continuity) does not
necessarily admit a utility representation. This challenge extends to richer domains; for example in
the risk domain, if the underlying set of lotteries is not a convex subset of lotteries, then a choice
correspondence that satisfies WARP and Independence does not necessarily admit an expected utility
representation (even if it admits a utility representation).
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Second, systematic deviations from structural assumptions are imposed by relating

small and large choice sets, achieving effects similar in spirit to Dillenberger (2010);

Cerreia-Vioglio, Dillenberger, and Ortoleva (2015)’s negative certainty independence
and Chakraborty (2021)’s weak present bias in more standard settings. These unex-

pected connections invite curiosity into the potential role of reference dependence

in studies that do not explicitly consider them.

Finally, the paper aligns with a broader agenda regarding the comprehensive ex-

amination of behaviors conventionally studied in isolation, providing breadth to the

already established depth. This agenda includes, among others, empirical studies

of possible interrelations in behavioral traits (Falk, Becker, Dohmen, Enke, Huff-

man, and Sunde, 2018; Chapman, Dean, Ortoleva, Snowberg, and Camerer, 2023;

Stango and Zinman, 2023),11 methodological development that separates prefer-

ence inconsistency and parametric misspecification (Halevy, 2015; Polisson, Quah,

and Renou, 2020; Echenique, Imai, and Saito, 2020, 2023; de Clippel and Rozen,

2023), experiments that assess a broad spectrum of anomalies as potential mistakes

(Nielsen and Rehbeck, 2022), theoretical investigation that links non-standard risk

and time preferences (Chakraborty, Halevy, and Saito, 2020), and revealed prefer-

ence analyses that highlight basic rationality postulates in rich/different domains

(Dembo, Kariv, Polisson, and Quah, 2021; Halevy, Walker-Jones, and Zrill, 2023;

Chen, Liu, Shan, Zhong, and Zhou, 2023).

2 Basic Framework

Let Y be a separable metric space, endowed with the standard Euclidean metric

d2, that represents the set of all alternatives. Let A be the set of all finite and

nonempty subsets of Y , also called choice sets. The primitive of this paper is a

choice correspondence c : A → A where c (B) ⊆ B for all B ∈ A. I assume

throughout the paper that c is continuous:

Axiom (Continuity). c has a closed graph.12

11Less representative samples are used in Burks, Carpenter, Goette, and Rustichini (2009) (truck
drivers) and Dean and Ortoleva (2019) (university students).

12That is, xn →d x, An →H A, and xn ∈ c (An) for every n = 1, 2, ... imply x ∈
c (A), where →H refers to convergence in the Hausdorff distance, defined by dH (X,Y ) =
max

{
supx∈X infy∈Y d2 (x, y) , supy∈Y infx∈X d2 (x, y)

}
.
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The risk, time, and social preferences studied in this paper share a common

starting point: For any given choice set, the decision maker is seemingly stan-

dard by maximizing a single utility function. But globally, behavior is non-standard

because this function depends on possibly different reference alternatives across

choice sets.13

Definition 1. A choice correspondence c admits an Ordered-Reference Dependent

Utility (ORDU) representation if there exist a linear order (R, Y ) and a set of utility

functions {Uy : Y → R}y∈Y such that

c (A) = argmax
y∈A

Ur(A) (y)

and r (A) = max (R,A) for all A, where c has a closed graph.14

Existing theories that incorporate a reference order can be traced back to Ru-

binstein and Salant (2006)’s Triggered Rationality, which coincide with ORDU. Re-

stricted to the generic choice domain, Kıbrıs, Masatlioglu, and Suleymanov (2023);

Giarlotta, Petralia, and Watson (2023); Kibris, Masatlioglu, and Suleymanov (2024)

expand on this trajectory by exploring different axiomatizations, stochastic choice,

and connections to psychological constraints / limited consideration. The latter sug-

gests how different kinds of rationality violations may be related, complementing

the present framework that focuses on context-dependent preferences. They also

capture interesting narratives in the generic choice domain. Kıbrıs, Masatlioglu, and

Suleymanov (2023) suggest that the top results when consumers search for a prod-

uct are conspicuous, serving as the reference and influencing their final decisions;

Giarlotta, Petralia, and Watson (2023) propose that the frog’s legs dish in Luce and

Raiffa’s Dinner is salient, becoming the reference and increasing a consumer’s con-

fidence, thence preference, for steak; Kibris, Masatlioglu, and Suleymanov (2024)

consider the case of marketing campaigns where a consumer is more likely to recall

an advertised product and uses it as benchmark to make consumption decisions.

Despite its simplicity and intuitiveness, focusing on the generic choice domain is

not without caveats. The formation of completely subjective reference points adds
13This naturally bounds non-standard behavior: When |Y | is finite, there are at most |Y | distinct

utility functions, but there are around 2|Y | choice sets, and this difference increases exponentially in
|Y |.

14A linear order (R, Y ) is a complete, reflexive, transitive, and antisymmetric binary relation R on
Y .
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challenges to their identification. Compounding this issue is the lack of structure in

each reference-dependent utility function and the absence of a systematic relation-

ship between these utility functions.

Explored in Sections 3-5 (risk, time, and social preferences), a richer choice

domain provides natural remedies to, and in fact benefit from, the flexibility of this

model. First, it significantly expands the interpretation of a reference order, where

it ranges from being partially subjective (ranking lotteries by riskiness, Section 3)

to fully objective (Gini index, Section 5), so as to capture the relevant domain-

specific context. In turn, the reference order serves as a natural anchor along which

domain-specific preference shifts are manifested, such as increasing risk aversion or

decreasing patience along the established order. The two components—reference

order and reference effect—interact with each another, yielding a framework that

captures a highly specific and tractable form of set-dependent preferences.

Moreover, the models in all three choice domains share a “meta” axiomatic

framework that in its simplest form characterizes ORDU. To illustrate the basic

idea, consider following definition that maintains the content of the weak axiom

of revealed preferences (WARP) but allows for selective application.

Definition 2. c satisfies WARP over S ⊆ A if for all A,B ∈ S, if B ⊂ A and c (A) ∩
B ̸= ∅, then c (A) ∩B = c (B).

The classical rationality assumption on choice behavior entails imposing WARP

over S = A. The following postulate imposes WARP only locally, using a reference

point as the anchor.

Axiom 2.1. For every choice set A ∈ A, c satisfies WARP over {B ∈ A : x ∈ B ⊆ A}
for some x ∈ A.

Theorem 1. c satisfies Axiom 2.1 and Continuity if and only if it admits an ORDU
representation.

Axiom 2.1 captures choice behavior that satisfies WARP in a reference-

dependent manner and coincides with the reference point property in Rubinstein

and Salant (2006). To understand this axiom, suppose choices from A and its

subset B constitute a WARP violation. If this is caused by a change in reference

point, specifically, that the reference alternative of A was removed when we go

to subset B, then a natural limitation of WARP violations would arise: Had we

12



not removed the reference alternative of A, choices must satisfy WARP. To put it

differently, suppose that by preserving some alternative x in A, choices from the

subsets of A would comply with WARP, then x is a candidate reference alternative

of A. Axiom 2.1 demands that every choice set contains (at least) one candidate

reference alternative, which makes is less demanding than the standard postulate

that imposes WARP indiscriminately.15

To illustrate further, consider the following choice correspondence on Y =

{a, b, c, d}.

A c (A) A c (A) A c (A)

{a, b, c, d} b {b, c, d} b {b, c} b

{a, b, c} b {b, d} b

{a, b, d} b {c, d} c

{a, c, d} d

{a, b} b

{a, c} a

{a, d} d

Note that this choice correspondence fails to satisfy WARP globally because d

is chosen from {a, c, d} but c is chosen from {c, d}. To check whether it satisfies

Axiom 2.1, we have to visit every choice set. Starting with A = {a, b, c, d}, note

that there is no WARP violations among subsets of A that contain a, i.e., a is a

reference alternative, so choice set A passes the test. These subsets have been

conveniently placed in the left column. Moreover, note that when we visit any of

these subsets, a continues to be a reference alternative, so they too pass the test.

For the remaining choice sets, we begin with A′ = {b, c, d} and note that is no

WARP violations among subsets of A′ that contain d, so A′ and these subsets pass

the test; they are conveniently positioned in the middle column. The only choice set

left is {b, c} where WARP is trivial because the only non-singleton subset of {b, c}
is itself. The axiom is thus satisfied. It amounts to a structured partitioning of

choice sets—the left, middle, and right columns—so that within each part there is

no WARP violation.16

15Since standard WARP requires “c satisfies WARP over A”, which in turn implies “c satisfies WARP
over S” for any S ⊆ A, it is stronger than Axiom 2.1.

16Axiom 2.1 is falsifiable whenever when |Y | ≥ 3. Using notation {a, b, c} to denote “b is cho-
sen from the choice set {a, b, c}”, the choice correspondence {a, b, c} , {a, b} , {b, c} , {a, c} have two
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The highlight of this approach is not the rationality assumption WARP per se,

but the way WARP as a behavioral postulate was generalized in an attempt to call

for its compliance locally. More generally, it follows the template “for every choice

set A, the choice correspondence c satisfies T over {B ∈ A : x ∈ B ⊆ A} for some

x ∈ Ψ(A)” where T can be a behavioral postulate of interest and Ψ can be an

objective range in which reference points lie. This general approach is referred to

as Reference Dependence (RD), which is formally introduced and analyzed in Online

Appendix B and used in Sections 3-5. Related studies like Kıbrıs, Masatlioglu, and

Suleymanov (2023) propose alternative characterization designed for WARP and

cannot be directly extended in this way (see Footnote 9).

3 Risk Preference

Consider a decision maker whose willingness to take risk is dynamic and dependent

on how much of it is avoidable. The safest alternative in a choice set provides a

natural measure for this context. Sometimes, we have the option to fully avoid

risk by keeping our assets in cash or by buying an insurance policy, and so the

safest option is quite safe. But in other situations, such as a carefully designed lab

experiment in which all options involve risk, taking some risk becomes unavoidable.

The premise of my model is a decision maker whose risk aversion systematically

differs between different set-dependent contexts—greater risk aversion when risk

is increasingly avoidable.

3.1 Preliminaries and axioms

Consider a finite set of prizes X ⊂ R, where |X| > 2, with the largest and smallest

prizes denoted by b and w respectively.17 Let Y = ∆(X) be the set of all probability

instances of WARP violations, (i) between {a, b, c} and {a, b} and (ii) between {a, b, c} and {b, c},
so none of a, b, c can be the reference alternative of A = {a, b, c}. Relatedly, a cardinal measure of
falsifiability is to count the minimum number of observations required for falsification. For standard
WARP, that number is 2: for example, when WARP is violated between {a, b, c} and {a, b}. For Ax-
iom 2.1, that number is 3: for example {a, b, c}, {a, b}, and {a, c}, since the reference of {a, b, c} is in
{a, b} and/or {a, c}, but WARP is violated both between {a, b, c}, {a, b} and between {a, b, c}, {c, b}.
Under this measure, reference dependence makes Axiom 2.1 harder to reject relative to WARP by
one additional observation.

17If |X| ≤ 2, either the only choice set is a singleton set or choice sets contain only lotteries related
by first order stochastic dominance, and Axiom 3.1 full pins down choices.
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measures over X, called lotteries. Everything else follows Section 2. Per convention,

δ denotes a degenerate lottery and δx denotes the degenerate lottery that gives

prize x ∈ X. For p, q ∈ ∆(X) and α ∈ [0, 1], pαq denotes the convex combination

αp⊕ (1− α) q. For p ∈ ∆(X), p (x) denotes the probability that lottery p gives prize

x. I assume throughout that c satisfies first order stochastic dominance (FOSD):

Axiom 3.1. If p first order stochastically dominates q (where p ̸= q) and p ∈ A, then
q /∈ c (A).

Next, Reference Dependence (Section 2) is applied to both WARP and the von

Neumann-Morgenstern’s Independence condition, beginning with a definition that

applies Independence selectively.

Definition 3. c satisfies Independence over S ⊆ A if for all A,B ∈ S and α ∈ (0, 1),

if p ∈ c (A), q ∈ A, qαs ∈ c (B), and pαs ∈ B, then pαs ∈ c (B) and q ∈ c (A).

In standard expected utility, c satisfies WARP and Independence over S = A. I

depart from standard expected utility by allowing for preferences to depend on the

safest available alternatives—the reference—but demand compliance with WARP

and Independence whenever a collection of choice sets share a reference. When is

that? If p (̸= q) is a mean-preserving spread of q (pMPSq), it is clearly not the safest.

Additionally, a second order partially compensates for the incomplete nature of MPS

by also deeming lotteries with increased probabilities of the most extreme prizes

(but keeping the relative probability of intermediate prizes the same) to be riskier.

Formally, p is an extreme spread of q (pESq) if p = βq ⊕ (1− β) (αδb ⊕ (1− α) δw)

for some β ∈ [0, 1) and α ∈ (q (b) , 1− q (w)).18

Definition 4. Let Ψ(A) := {p ∈ A : for all q ∈ A, neither pMPSq nor pESq} be the

set of least risky lotteries in A.

Axiom 3.2 (Risk Reference Dependence). For every A ∈ A, c satisfies WARP and
Independence over {B ∈ A : p ∈ B ⊆ A} for some p ∈ Ψ(A).

18The two risk orders are non-contradictory and typically non-nested. Extreme spread is intu-
itively related to Aumann and Serrano (2008)’s risk index, where lotteries are deemed safer in
the “economics sense”—under standard expected utility, the extreme spreads of q are lotteries in
conv ({q, δb, δw}) that are preferred to q by a more-risk-loving decision maker if a more-risk-averse
decision maker does so. Non-contradictory: extreme spreads of q live in conv ({q, δb, δw}), which
does not contain any mean preserving contraction of q. Non-nested: extreme spreads need not pre-
serve mean, mean preserving spreads need not maintain relative probability of intermediate prizes;
in the special case where |X| ≤ 3, mean preserving spreads are nested in extreme spreads.
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The next and last axiom captures changing risk aversion when more options be-

come available. It is standard to say that a preference relation ≿1 is more-risk-averse
than another preference relation ≿2 if, for any degenerate lottery δ and lottery p,

δ ≿2 p implies δ ≿1 p. This definition is often studied alongside expected utility,

but it is, in fact, independent of it. Axiom 3.3 extends this definition to lotteries

that differ by a degenerate component: where pαs can be obtained from δαs by

reallocating probabilities from one prize to one or more prizes. Then, it posits that

a decision maker cannot be more-risk-loving when a choice set expands. The un-

derlying intuition is that additional alternatives should only be able to increase the

extent to which risk is avoidable, and if the avoidability of risk (weakly) increases

risk aversion, then the additions must not result in increased risk tolerance. We say

the pair of lotteries (δ∗, p∗) is a common mixture of the pair of lotteries (δ, p) if there

exist α ∈ [0, 1] and s ∈ ∆(X) such that δ∗ = δαs and p∗ = pαs.

Axiom 3.3. Suppose B ⊂ A and (δ1, p1) , (δ2, p2) are common mixtures of (δ, p). If
δ2 ∈ c (B) and p2 ∈ B\c (B), then δ1 ∈ A implies p1 /∈ c (A).

3.2 Model

Definition 5. c admits an Avoidable Risk Expected Utility (AREU) representation

if it admits an ORDU representation
(
{Ur}r∈Y , R

)
such that for some set of strictly

increasing functions {ur : X → R}r∈Y ,

• Ur (p) =
∑

x p (x)ur (x),

• pMPSq and pESq each implies qRp,

• qRp implies uq = f ◦ up for some concave function f :R → R.

Theorem 2. c satisfies Axioms 3.1-3.3 and Continuity if and only if it admits an AREU
representation.

When choice behavior admits an AREU representation, it is as if the reference

alternative r (A) is first determined by R, which ranks safer alternatives higher, and

then the decision maker maximizes expected utility using the associated context-

dependent (Bernoulli) utility function ur(A). Moreover, a safer reference leads to

a (weakly) more concave utility function. This generalizes the standard model
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where a decision maker maximizes expected utility using a single utility function

throughout, but departure from expected utility is limited to systematic changes in

risk attitude. It can be shown that (for a fixed R) each ur is unique up to positive

affine transformation, except possibly when r = bαw.19

Allais in WARP violations Perhaps because the Allais paradox is a direct failure

of the structural assumption Independence, many models that seek to explain this

anomaly weaken Independence but maintain basic rationality. AREU considers an

arguably different approach by linking the Allais paradox to a completely different

class of failures, WARP violations from non-binary choice sets.

To see the intuition, consider the common ratio effect in binary comparisons: the

sure prize of $3000 (p1) is preferred to a lottery that yields $4000 with 80% chance

(p2), but a lottery that yields $4000 with 20% chance (q2) is preferred to a lottery

that yields $3000 with 25% chance (q1). If treated as separate decisions, the former

decision entails a (Bernoulli) utility function that is more concave than the latter’s

under the expected utility functional.20 But the expected utility theory rules out the

use of different utility functions for the same decision maker.21 AREU builds on this

observation. Given a reference order that deems r ({p1, p2}) safer than r ({q1, q2}),
the utility function for the first choice set is more concave, which in consequence

allows for the observed pair of choices (p1 and q2) but rules out the opposite pair

(p2 and q1).22 The same prediction applies to the common consequence effect and

the lotteries involved can be generalized.23

19Uniqueness is demonstrated in Theorem 2. When r = bαw, it is possible that ur is only used
to evaluate lotteries that first order stochastically dominates / dominated by r, so that any strictly
increasing transformation of ur is acceptable.

20Let A = {p1, p2} and B = {q1, q2}. Suppose uA (resp. uB) explains the choice from A (resp.
B) under expected utility. After normalization (for example uA (0) = uB (0) = 0 and uA (4000) =
uB (4000) = 1), choice pattern (p1, q2) arises if and only if uA (3000) > 0.8 and uB (3000) < 0.8,
which in turn implies uA is a concave transformation of uB .

21More precisely, expected utility allows for different utility functions as long as they are related
by positive affine transformations, but these utility functions make identical predictions.

22Continuing from Footnote 20, the opposite behavior requires uB (3000) > uA (3000) and is
ruled out. This observation resembles the Negative Certainty Independence postulate in Dillenberger
(2010); Cerreia-Vioglio, Dillenberger, and Ortoleva (2015).

23Consider a degenerate lottery δ and a lottery p such that neither of them first order stochastically
dominates another. Consider the lotteries δ′ = δαq and p′ = pαq where q is a lottery and α ∈ (0, 1),
and suppose |X| = 3. If δ ∈ c ({δ, p}) and p′ ∈ c ({δ′, p′}), then for all u1, u2 : X → R such that
u1 explains the first choice and u2 explains the second choice, it is straightforward to show that
u1 = f ◦ u2 for some concave function f : R → R. Moreover, these choices can always be explained
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Because different utility functions are involved, AREU predicts a novel man-

ifestation of the common ratio effect—typically formulated in binary compar-

isons—as WARP violations. Consider the lotteries p1 = δ3000, p2 = 0.5δ4000 ⊕ 0.5δ0,

q1 = 0.2δ4000 ⊕ 0.7δ3000 ⊕ 0.1δ0, and q2 = 0.4δ4000 ⊕ 0.3δ3000 ⊕ 0.3δ0, related by com-

mon mixture.24 A decision maker who chooses p1 over p2, q2 over q1, and q1 over

p1 in binary comparisons commits the common ratio effect (between the first two

choices), reconciled in AREU by a reference order that ranks p1 highest. Now, con-

sider the choice set {p1, q1, q2}, for which p1 must be the reference. The decision

maker treats this choice set as having the same context as {p1, p2} and use the same

utility function that ranks p1 over p2, which, due to expected utility, requires her to

choose q1 from {p1, q1, q2}. However, the decision maker chose q2 from {q1, q2}, so

she has committed a WARP violation. This simple observation introduces a direct

link between structural violations and basic rationality violations.

Other evidence While the Allais paradox takes center stage among anomalies in

the risk domain, the evidence and intuition for increased risk aversion in the pres-

ence of safer options are also found in a wide range of studies. In a setting meant

to test for the compromise effect, Herne (1999) found that the presence of a safer

option results in WARP violations in the direction of greater risk aversion. Wakker

and Deneffe (1996) introduces the tradeoff method to elicit risk aversion without

using a sure prize and found that the estimated utility functions are less concave rel-

ative to standard methods that involve sure prizes. Andreoni and Sprenger (2011)

found similar effects when the safest option is close enough to certainty. Restricted

to binary comparisons, Bleichrodt and Schmidt (2002) studies a model of context-

dependent gambling effect where a decision maker has two utility functions and

uses the more concave one whenever the binary comparison involves a riskless op-

tion.

Linking structural properties to basic rationality It turns out that compliance

with WARP or Independence would independently bring us back to standard ex-

pected utility, stated in Proposition 1.

by an AREU representation such that r ({δ, p})Rr ({δ′, p′}). Conversely, suppose the choices c ({δ, p})
and c ({δ′, p′}) admit an AREU representation such that r ({δ, p})Rr ({δ′, p′}), then p ∈ c ({δ′, p′})
whenever p ∈ c ({δ, p}) (and equivalently δ ∈ c ({δ, p}) whenever δ′ ∈ c ({δ′, p′})).

24q1 = 2
5p1 ⊕

3
5s and q2 = 2

5p2 ⊕
3
5s where s = 1

3δ4000 ⊕
1
2δ3000 ⊕

1
6δ0.
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Proposition 1. If c admits an AREU representation, then the following are equivalent:

1. c satisfies WARP (over A).

2. c satisfies Independence (over A).

3. c admits an expected utility representation.

4. c admits a utility representation.

This also means that if c admits any utility representation, then it must also have

an expected utility representation.25 This observation provides a formal separation

between AREU and non-expected utility models that uphold basic rationality and

further suggests that violation of Independence in this model is a matter of changing

preferences.

It can be shown that imposing transitivity achieves the same outcome. Moreover,

if transitivity is only satisfied locally, that is, applying only to a region of lotteries,

then the model gives rise to betweenness behavior in that region and further implies

fanning out if behavior is risk averse and fanning in when it is risk loving. These

in-depth analyses are relegated to Lim (2023a).

Model specification and identification In applications, keeping track of so many

utility functions can be challenging, an issue shared in Cerreia-Vioglio, Dillenberger,

and Ortoleva (2015), Chakraborty (2021), and Ellis and Masatlioglu (2022).26

AREU provides a middle ground: Knowing that utility functions are related by con-

cave transformations, an analyst might reasonably assume that a decision maker’s

utility functions come from a set of constant absolute risk aversion (CARA) utility

functions given by a subjective range of Arrow-Pratt coefficients α ∈ [α, ᾱ]. More

generally, it is also possible for risk attitude to progress from risk loving (convex

utility functions) to risk averse (concave utility functions). The range of risk atti-

tudes is ultimately subjective and could vary across individuals or demographics;

one individual may be moderately but consistently risk averse, with a very small

range of CARA coefficients, whereas another individual may be occasionally risk

loving but sometimes very risk averse.
25As is standard, we say c admits a utility representation if there exists a real valued function

U : Y → R such that c (A) = argmaxy∈A U (y) for all A ∈ A.
26Relatedly, models of ambiguity aversion also use a collection of subjective priors (Gilboa and

Schmeidler, 1989).
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Partial subjectivity in the reference order allows for more individual differences

but burdens identification. In the extreme case where behavior is consistent with

standard expected utility, it is impossible to pin down R, although analysis can pro-

ceed with standard expected utility. Fortunately, as long as two reference points

index different utility functions, identification of R between them is guaranteed.

First, if two choice sets differ only by p, and choices are inconsistent with expected

utility maximization, then we identify that p ranks higher in R than the other alter-

natives in the choice set. It turns out that the converse is also true. As long as p and

q index different utility functions, if pRq, then we can find choice sets A,B such

that p, q ∈ A and B = A\ {p} where choices from A and B violate WARP, meaning

we revealed pRq.27

4 Time Preference

The canonical model for time preference is Discounted Utility, where a decision

maker evaluates each payment-time pair (x, t) using exponential discounting, i.e.,

δtu (x). But the Stationarity condition within this model is routinely challenged by

lab and field subjects who switch their choices between two payments when the

decision is made in advance, typically favoring the later option for long-term de-

cisions, an actively studied behavioral phenomenon termed present bias (Laibson,

1997; Frederick, Loewenstein, and O’donoghue, 2002; Benhabib, Bisin, and Schot-

ter, 2010; Halevy, 2015; Chakraborty, 2021; Chambers, Echenique, and Miller,

2023). This section studies how present bias is related WARP-violating preference

changes. The original axioms in Fishburn and Rubinstein (1982) are imposed only

among choice sets that share a reference point, which in this case is the soonest

available payment, as it partially captures how early in advance a decision maker is

making the decision.

27The proof of Proposition 1 contains this observation. Essentially, it relies on a less obvious
property implied the model that guarantees existence of a full-dimensional subset of lotteries that
rank below p and q in R but are better than p and q when they act as the reference points.
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4.1 Preliminaries and axioms

Let X = [a, b] ⊂ R>0 be a non-degenerate interval of payments and let T = [0, t̄] ⊂
R≥0 be a non-degenerate interval of time points. Let Y = X × T be the set of all

timed payments, where each option (x, t) ∈ X × T is a payment of x that arrives at

time t. Everything else follows Section 2. To simplify analysis, I assume the upper

bound of payments is large enough so that some payment at time t̄ is better than

the worst payment at time 0, specifically (b, t̄) ∈ c ({(a, 0) , (b, t̄)}). The first axiom is

standard; greater payments and sooner payments are better.

Axiom 4.1.

1. If x > y, then c ({(x, t) , (y, t)}) = {(x, t)}.

2. If t < s, then c ({(x, t) , (x, s)}) = {(x, t)}.

The well-known Stationarity condition posits that a decision maker’s preference

between two future payments is consistent regardless of when the decision is made.

Consider the following definition that allows for selective application.

Definition 6. c satisfies Stationarity over S ⊆ A if for all A,B ∈ S and a > 0, if

(x, t) ∈ c (A), (y, q) ∈ A, (y, q + a) ∈ c (B), and (x, t+ a) ∈ B, then (x, t+ a) ∈
c (B).

Whereas global compliance with Stationarity is captured by S = A, the next

axiom demands local compliance. Specifically, it requires Stationarity to be satisfied

between any two choice sets that share an earliest payment.

Definition 7. Let Ψ(A) := {(x, t) ∈ A : t ≤ q for all (y, q) ∈ A} be the set of earliest
payments in A.

Axiom 4.2 (Time Reference Dependence). If Ψ(A) ∩ Ψ(B) ̸= ∅, then c satisfies
WARP and Stationary over {A,B}.

It turns out that Axiom 4.2 is an application of Reference Dependence (Section 2),

formalized by Lemma 1, which assures us that the proposed approach is related to

demanding compliance between certain pairs of choice sets.

Lemma 1. c satisfies Axiom 4.2 if and only if for every A ∈ A and (x, t) ∈ Ψ(A), c
satisfies WARP and Stationarity over {B ∈ A : (x, t) ∈ B ⊆ A}.
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The next postulate rules out increased patience when more options become

available. The intuition is that additional options can only tempt the decision maker

to become more impatient, so if an impatient decision is already made from B, for

example if (x1, t1) is (strictly) chosen over (x2, t2) where t1 < t2, then there is no

superset A ⊃ B such that the decision maker becomes more patient by choosing

(x2, t2 + d) in the presence of (x1, t1 + d).

Axiom 4.3. Suppose B ⊂ A, t1 < t2, and d ∈ R. If (x1, t1) ∈ c (B) and (x2, t2) ∈
B\c (B), then (x1, t1 + d) ∈ A implies (x2, t2 + d) /∈ c (A).

However, this falls short of definitively capturing changes in patience. Even in

a completely standard world where every individual maximizes exponentially dis-

counted utility, behavioral differences in delay aversion (among individuals) cannot

be definitively decomposed into differences in discounting and differences in con-

sumption utility, an issue discussed in Ok and Benoît (2007). Meaning an individual

who prefers the sooner alternative could have greater patience paired with lower

marginal utility for money.

The last postulate addresses this issues by capturing fixed consumption utilities

under varying discounting/patience: Suppose a decision maker is indifferent be-

tween all options in the choice set {(x1, t1) , (x2, t2) , (x3, t3)}, where x1 < x2 < x3

and t1 < t2 < t3. Then in the choice set {(x1, λt1) , (x2, λt2) , (x3, λt3)} where

0 < λ < 1, since the delays between options have shortened, a standard expo-

nential discounting decision maker would pick (x3, λt3) as the new choice. Yet, our

decision maker will face competing forces. On one hand, the possibility of sooner

consumption makes her more impatient; on the other hand, shorter delays between

options make later payments more attractive. Allowing her the freedom to resolve

these competing forces, the next postulate requires that if she ends up choosing both

(x1, λt1) and (x3, λt3)—as if the competing forces are balanced—then she must also

choose the intermediate option (x2, λt2). The same requirement applies when a

common delay (or advancement) d is additionally imposed. Both Axiom 4.3 and

Axiom 4.4 are trivially satisfied in exponential discounting.

Axiom 4.4. Consider A = {(x1, t1) , (x2, t2) , (x3, t3)} such that t1 < t2 < t3 and
A′ = {(x1, λt1 + d) , (x2, λt2 + d) , (x3, λt3 + d)} such that 0 < λ < 1 and d ∈ R. If
c (A) = A, then either c (A′) = (x1, λt1 + d), c (A′) = (x3, λt3 + d), or c (A′) = A′.
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4.2 Model

Since we consider the standard environment where sooner is always better, discount

factors are restricted to non-negative real numbers strictly less than 1, with the

exception of r = (x, t̄) for which δr = 1 is possible.

Definition 8. c admits a Present-Biased Exponentially Discounted Utility (PEDU)

representation if it admits an ORDU representation
(
{Ur}r∈Y , R

)
such that for some

strictly increasing function u : X → R and set of discount factors {δr}r∈Y ,

• Ur (x, t) = δtru (x),

• t < t′ implies (x, t)R (x′, t′) and δ(x,t) ≤ δ(y,t′),

• t = t′ implies δ(x,t) = δ(y,t).

Theorem 3. c satisfies Axioms 4.1-4.4 and Continuity if and only if it admits a PEDU
representation.

In this model, it is as if the decision maker maximizes exponentially discounted

utility, but with discount factors that depend on the timing of the earliest avail-

able payment. When it is possible to choose an early payment, the decision maker

uses a lower discount factor, resulting in behavior that reflects reduced patience.

The model thus delivers present bias behavior using familiar technologies—since

the exponential discounting form is preserved in every instance of decision-making,

changes in patience are simply captured by set-dependent discount factors. Intu-

itively, with the entire set of possible payments progressively postponed, the de-

cision maker begins to treat them more akin to long-term concerns than before,

resulting in increased patience.

It can be shown that δr is unique given u, except possibly when r = (x, t̄).28 In

applications, since the reference order and the discount factors depend only on the

timing of a payment, it is without loss to consider discount factors that are based on

time rather than on alternatives. This is achieved by setting δ̃t := δ(x,t) for all t ∈ T

and then using the earliest available time of a payment as reference point.

28Uniqueness is demonstrated in the proof of Theorem 3. When r = (x, t̄), δr is only used to
evaluate alternatives that also arrive at time t̄, so any δr paired with a strictly increasing u can
explain those choices. It could still be unique if limt→t̄ δ(x,t) = 1, since a PEDU representation
requires δ(x,t) ≤ δ(x,t̄) ≤ 1.
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Generalized single-switching Changes in preferences are tractable due to a gen-

eralized single-switching property. In binary comparisons, a unique threshold cap-

tures the postponement beyond which the later payment will be chosen and before

which the sooner payment will be chosen. In more general choice sets, this thresh-

old no longer guarantees a choice between the two timed payments but continues

to stipulate the point of postponement beyond which the sooner payment cannot

be chosen (because the later payment is available) and before which the later pay-

ment cannot be chosen (because the sooner payment is available). This generalized

single-switching property thus extends our understanding of present bias in binary

comparisons to arbitrary choice sets—even in the absence of basic rationality as-

sumptions—and it is closely tied to the unified framework in which references are

ordered and preference shifts systematically along this established order.

Present bias in WARP violations Although present bias is typically viewed as a

structural violation, PEDU predicts a novel manifestation of present bias as WARP

violations. Consider the present bias behavior where “$20 in 4 days” is chosen over

“$18 in 3 days”, but “$18 today” is chosen over “$20 tomorrow”. In PEDU, this be-

havior is explained using a lower discount factor for the latter choice set. However,

notice that under this lower discount factor, “$18 in 3 days” is preferred to “$20 in

4 days”, so the introduction of a third option that induces this discount factor but

is not itself chosen, for example “$15 today”, will result in a reversal where “$18 in

3 days” is chosen over “$20 in 4 days”. This is now a WARP violation that shares

the same underlying driver as present bias behavior, even though present bias is

typically studied in binary comparisons. In fact, consistent with the spirit of present

bias, WARP violations in PEDU are restricted to decreased patience, and only when

sooner payments are added.

Linking structural properties to basic rationality To further ascertain the afore-

mentioned connection, Proposition 2 shows that relaxing just one of the two con-

ditions would fully recover standard exponential discounting. Consequently, if a

PEDU decision maker has any utility representation, then she must also have a

standard exponential discounting utility representation. This adds to the suggestion

that anomalies captured by PEDU are rooted in systematic changes in preferences.

Proposition 2. If c admits a PEDU representation, then the following are equivalent:
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1. c satisfies WARP (over A).

2. c satisfies Stationarity (over A).

3. c admits an exponential discounting utility representation.

4. c admits a utility representation.

Hyperbolic discounting Proposition 2 separates PEDU from hyperbolic discount-

ing, quasi-hyperbolic discounting, and related generalizations (Phelps and Pollak,

1968; Loewenstein and Prelec, 1992; Laibson, 1997; Frederick, Loewenstein, and

O’donoghue, 2002; Chambers, Echenique, and Miller, 2023; Chakraborty, 2021)

due to their adherence to basic rationality, but the empirically informed intuition

that discount factors can vary is shared. In contrast, PEDU varies discount factors at

the choice problem level whereas hyperbolic discounting does so at the alternative

level. Binary comparisons hold similar behavioral implications: when two options

are gradually advanced, there may be a point where the choice is switched from the

sooner to the later.29 But for larger choice sets, unlike PEDU, hyperbolic discount-

ing predicts that the preference ranking between any two options stays the same

regardless of the presence of a third alternative.

WARP violations in other time preference settings Beyond the conventional

time preference setting, an active literature on menu preference applies Gul and Pe-

sendorfer (2001)’s temptation model to decision makers who prefer a smaller menu

in order to prevent their future selves from committing undesirable present bias be-

haviors (Noor, 2011; Lipman, Pesendorfer, et al., 2013; Ahn, Iijima, Le Yaouanq,

and Sarver, 2019). In these models, past and future selves prefer to choose differ-

ently from the same set of alternatives, which could manifest as a reversal if played

out, therefore PEDU and these models tackle dynamic inconsistency using related

intuitions about long-term and short-term attitudes.

Freeman (2021)’s task completion study, which is related to the above litera-

ture and closer to PEDU’s setting, considers a time-inconsistent decision maker who

exhibits choice reversals when additional opportunities for completions are intro-

duced. In particular, a sophisticated decision maker ends up completing the task

29Chakraborty (2021) calls this Weak Present Bias and studies its implications.
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earlier, therefore choosing a sooner option when choice set expands is a common

theme between our work. However, the manifestation of this behavior is different;

a reversal in PEDU can only occur when an alternative earlier than any other is

added, yet in Freeman (2021), adding this kind of alternatives either results in the

addition chosen or the choice remains unchanged, therefore WARP will hold.

Consumption streams Focusing on one time payment helps glean the intuition of

this framework, but the approach already suggests how an extension to consump-

tion streams can be conducted, where a decision maker maximizes
∑

t δ
t
r(A)u (xt)

(for discrete time). If r (A) is the consumption stream that offers the soonest

payment, then the characterization amounts to adding Koopmans (1960)’s axioms

alongside WARP and Stationarity using Reference Dependence (Section 2). Online

Appendix B clarifies what axioms can be accommodated, and it includes common

versions of separability.

5 Social Preference

Consider a decision maker whose willingness to share is greater when the situa-

tion allows for greater equality. It departs from models of other-regarding pref-

erences that capture a fixed inequality aversion (Fehr and Schmidt, 1999; Bolton

and Ockenfels, 2000; Charness and Rabin, 2002). To illustrate, suppose a deci-

sion maker is endowed with $10 and is asked to share it with another individual.

However, instead of choosing any split of this $10, she was only given a few op-

tions. When asked to choose between giving $2 and giving $3, giving $2 may seem

like a fair decision. However, when the choice is between giving $2, $3, or $5, she

may opt for giving $3 instead. The choices c ({($8, $2) , ($7, $3)}) = {($8, $2)} and

c ({($8, $2) , ($7, $3) , ($5, $5)}) = {($7, $3)} violate WARP, and hence a fixed utility

function, even if it captures other-regarding preferences and inequality aversion, is

incapable of explaining this behavior.

5.1 Preliminaries and axioms

Let Y = [w,+∞) × [w,+∞), where w ∈ R>0, be a set of income distributions. For

each option (x, y) ∈ Y , x is the dollar amount received by the decision maker and y
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is the dollar amount given to another individual. Everything else follows Section 2.

The first axiom assumes that an income distribution is strictly preferred when it

gives someone more and no one less.

Axiom 5.1. If x ≥ x′, y ≥ y′, and (x, y) ̸= (x′, y′), then c ({(x, y) , (x′, y′)}) = {(x, y)}.

Reference Dependence (Section 2) adapts to this domain and characterizes choices

that conform with quasi-linear preferences when the underlying choice sets have the

same level of attainable equality. Since the impending model involves reference-

dependent preferences, using quasi-linear utilities as baseline (rather than using

more general models of other-regarding preferences) provides meaningful restric-

tions.

Definition 9. c satisfies Quasi-linearity over S ⊆ A if for all A,B ∈ S and a ∈
R\ {0}, if (x, y) ∈ c (A), (x′, y′) ∈ A, (x′ + a, y′) ∈ c (B), and (x+ a, y) ∈ B, then

(x+ a, y) ∈ c (B).

The measure of attainable equality is based on the Gini coefficient,

G ((x, y)) =
|x− y|+ |y − x|

4 (x+ y)
,

which ranges from 0 (most balanced) to 0.5 (least balanced) for our 2-agents set-

ting. Analogous to other domains, compliance with WARP and Quasi-linearity is

called for when two choice sets share a Gini-minimizing income distribution.

Definition 10. Let Ψ(A) := {(x, y) ∈ A : G ((x, y)) ≤ G ((x′, y′)) for all (x′, y′) ∈ A}
be the set of most-balanced income distributions in A.

Axiom 5.2 (Equality Reference Dependence). For any A ∈ A and any most-
balanced income distribution (x, y) ∈ Ψ(A), c satisfies WARP and Quasi-linearity
over {B ∈ A : (x, y) ∈ B ⊆ A}.

The next and last postulate regulates changes in preferences. Suppose y > y′

and a decision maker chooses to share more (x, y) than to share less (x′, y′). I

postulate that making more options available will not cause the decision maker to

switch to sharing less, since the added options can only increase attainable equality.

Axiom 5.3. Suppose B ⊂ A and y > y′. If (x, y) ∈ c (B) and (x′, y′) ∈ B\c (B), then
(x′, y′) /∈ c (A).
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5.2 Model

Definition 11. c admits a Fairness-based Social Preference Utility (FSPU) represen-

tation if it admits an ORDU representation
(
{Ur}r∈Y , R

)
such that for some set of

strictly increasing functions {vr : [w,+∞) → R}r∈Y ,

• Ur (x, y) = x+ vr (y),

• G (r) < G (r′) implies rRr′ and vr (y)− vr (y
′) ≥ vr′ (y)− vr′ (y

′) for all y > y′,

• G (r) = G (r′) implies vr (y) = vr′ (y).

Theorem 4. c satisfies Axioms 5.1-5.3 and Continuity if and only if it admits an FSPU
representation.

FSPU combines an objective measure of equality with a subjective interpretation

of fairness. Every decision maker bases her choice on the Gini-minimizing option,

r (A), as it captures the amount of attainable equality in a choice set. When attain-

able equality is higher (G (r (A)) is lower), utility difference between sharing more

and sharing less increases, reflecting increased willingness to share. The amount of

increase depends on the decision maker’s subjective sense of fairness. A very large

increase causes WARP violations, where the decision maker switches from an option

that shares less to an option that shares more even though both options are always

present. Like the other domains, preference parameters {vr}r∈Y are unique.30

For applications, it is without loss to further simplify FSPU by using Gini coef-

ficient—rather than alternatives—to index context-dependent utility from sharing.

To do so, for all Ḡ ∈ [0, 0.5), set ṽḠ := v(x,y) where Ḡ = G ((x, y)), and then use the

lowest attainable Gini coefficients as reference points.

Menu-dependent altruism As in the motivating example, the model explains

context-dependent willingness to share when distributing a fixed pie with differ-

ent splitting options. Suppose a decision maker is allocating $M between herself

and another individual, and each choice set is characterized by a set of splitting

fractions D ⊂ [0, 1]. That is, she can allocate α · $M to herself and (1− α) · $M to

other party if and only if α ∈ D. Consider D = {0.6, 0.7} and D′ = {0.5, 0.6, 0.7}.

Since attainable equality is greater in D′ (it contains an equal split), a decision

30Uniqueness is demonstrated in the proof of Theorem 4.
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maker who chooses 0.7 from D may exhibit increased willingness to share that re-

sults in choosing 0.6 from D′, even if this violates WARP. But the model rules out

the opposite behavior: A decision maker who chooses 0.6 from D cannot choose

0.7 from D′, since it would imply decreased willingness to share. Also, a reversal

cannot happen between D = {0.6, 0.7} and D′′ = {0.6, 0.7, 0.8} since they have the

same level of attainable equality.

Equality over generosity Willingness to share is maximized when a perfectly bal-

anced income distribution is available. In particular, the model captures increased

altruism not due to the opportunity to give more per se, but due to the opportu-

nity to be equal. To illustrate the difference, consider the same example but with

D = {0.5, 0.3, 0.2} and D′ = {0.3, 0.2}. Even though D contains alternatives that

achieve greater equality, the decision maker’s ability to give is the same across the

two choice sets. Yet, since the feasible allocations are always unfavorable to her,

higher attainable equality results from her ability to take more. In this example, the

decision maker may be interpreted as being less altruistic when the world is unfair

to her, but becomes more altruistic when more greater equality becomes possible.

Fairness over efficiency Consider one last application where FSPU allows for will-

ingness to forgo a greater total surplus in favor of sharing. Suppose the decision

maker must choose between ($30, $20) and ($60, $0). The second option is appeal-

ing in that the total amount of money is greater, whereas the first option sacrifices

both total surplus and payment to oneself in order to provide a share to the other

individual. Suppose ($60, $0) is chosen. In FSPU, adding ($25, $25) as an option

can cause the decision maker to switch from ($60, $0) to ($30, $20) due to increased

altruism. While this behavior seems reasonable, it is inconsistent with any model

that complies with WARP.

Empirical evidence The vast literature on distributional preferences provides sug-

gestive evidence for FSPU behavior. Moreover, unlike the case of risk and time do-

mains, they do focus on basic rationality violations. In dictator games, List (2007);

Bardsley (2008); Korenok, Millner, and Razzolini (2014) find that changes to a dic-

tator’s choice set affect her willingness to give and result in WARP-violating choices.

Dana, Cain, and Dawes (2006) investigate the underlying mechanism by making
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the dictator game an option and Dana, Weber, and Kuang (2007) do so by manip-

ulating the visibility of the choice set. They find the audience effect, where fair

behavior is the result of subjects’ desire to be perceived (by themselves and others)

as fair. Rabin (1993) studies an intention-based explanation in game theoretic set-

tings where kindness is reciprocated. Although existing studies motivate FSPU, the

model does not distinguish between willingness to share that depends intrinsically

on outcomes and that resulting from intentions.31

In a more recent study, Cox, List, Price, Sadiraj, and Samek (2016) conduct ex-

periments that explicitly test for basic rationality violations in dictator games and,

consistent with FSPU, find that shrinking a choice set results in WARP violations

in the direction of keeping more for oneself. They propose a modification to basic

rationality by introducing a testable prediction based on a definition of moral refer-

ence points, which depend on the framing of the problem (e.g., “Give” and “Take”)

and features of the feasible distributions. When moral reference points are fixed,

rationality postulates are satisfied; otherwise, violations favor the party who bene-

fits from the new moral reference point. Their work provides empirical support for

FSPU, which in turn offers a theory that complements their findings.

Observable contexts and menu preference The intuitions contained in FSPU

resonates with other studies that, unlike FSPU, exploit a richer setting. In settings

that include multiple actors, Cox, Friedman, and Sadiraj (2008) study how the

generosity of a first mover affects the altruism of a second mover. Cheung (2023)

focuses on a second mover who, more generally, makes different decisions from the

same choice set based on how the underlying choice set was chosen by a first mover.

Relatedly, van Bruggen, Heufer, and Yang (2023) consider a decision maker whose

social preference depends on exogeneous contexts like “selfish” and “generous”.

In a menu preference setting, Dillenberger and Sadowski (2012) study a decision

maker who has shame concern and prefers a smaller menu that excludes norma-

tively better allocations that entail lower self-payoffs, since not choosing those op-

tions can induce shame.
31More on outcome-based vs intention-based inequality aversion can be found in Ainslie (1992),

Nelson (2002), Fehr and Schmidt (2006), Sutter (2007), and Kagel and Roth (2016).
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Linking structural properties to basic rationality Like before, Proposition 3

shows that WARP violation and failure of standard postulate (Quasi-linearity) are

linked. In this setting, it also suggests that wealth effects may be in part contributed

by reference dependent preferences.32

Proposition 3. If c admits a FSPU representation, then the following are equivalent:

1. c satisfies WARP (over A).

2. c satisfies Quasi-linearity (over A).

3. c admits a quasi-linear utility representation.

4. c admits a utility representation.

6 Conclusion

This paper presents a single, unifying, framework for reference-based context-

dependent preferences. The key innovation, Reference Dependence (RD), provides a

way to jointly and systematically weaken multiple postulates even if they are con-

ceptually distinct. The method is then applied to the risk, time, and social domains

where basic rationality postulates and structural postulates are jointly relaxed, up-

holding the core principles of normative postulates by demanding their local com-

pliance. In each setting, behavior can be understood as the result of canonical

models when reference points are fixed, and deviations from these models are ac-

counted for by systematic changes in reference-dependent preference parameters.

Reference points in this framework are determined by the maximization of a refer-

ence order, which can be viewed as an instrument that captures the relevant context

of a choice problem.

Building upon decades of domain-specific research on seemingly independent

structural anomalies, including but not limited to the Allais paradox and present

bias behavior, this paper studies a possible link that could relate them to WARP

32Quasi-linear utility in wealth is often interpreted as the absence of wealth effects. In this domain,
it means an individual’s willingness to give does not depend on how much she would have left—her
wealth—because if giving t is better than giving t′ with a base wealth w, i.e., (w − t) + v (t) >
(w − t′) + v (t′), then the same holds true at a different wealth level w′, i.e., (w′ − t) + v (t) >
(w′ − t′) + v (t′).
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violations. This, in turn, informs more fundamentally on the relationship between

rationality postulates and structural postulates. The exercise adds to our under-

standing of why normative postulates fail, offers new ways to introduce assump-

tions, and suggests new avenues for empirical research.
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A Appendix: Proofs

Theorem 1, Theorem 2, Theorem 3, and Theorem 4 require a technical result,

Lemma 2, that generalizes a large class of behavioral postulates called finite theories
in a reference dependent manner. The result is stated now but formally introduced

and proved in Online Appendix B. The definition of a finite theory is also given

in Online Appendix B, it includes WARP, Independence, Stationarity, and Quasi-

linearity.

A correspondence Ψ : B → A where Ψ(A) ⊆ A is called an α−correspondence if

for all A,B ∈ B, if a ∈ Ψ(A) and a ∈ B ⊂ A, then a ∈ Ψ(B). Given a linear order
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(R, Y ), let r (A) denote the unique element x ∈ A such that xRy for all y ∈ A. A

linear order (R, Y ) is called Ψ-consistent if for all A ∈ B, r (A) ∈ Ψ(A).

Lemma 2. Consider a choice correspondence c, a finite theory T , and an
α−correspondence Ψ. The following are equivalent:

1. (Reference Dependence) For every choice set A ∈ B, c satisfies T over
{B ∈ B : x ∈ B ⊆ A} for some x ∈ Ψ(A).

2. There exists a Ψ-consistent linear order (R, Y ) such that for all x ∈ Y , c satisfies
T over {B ∈ B : r (B) = x}.

A.1 Proof of Theorem 1

Lemma 3. Suppose Y is finite. A choice correspondence c satisfies Axiom 2.1 if and
only if it admits an ORDU representation.

Proof. “If” is straightforward. I prove “only if”. Denote by Γ (A) the set of alterna-

tives x in A such that c satisfies WARP over S = {B ⊆ A : x ∈ B}, guaranteed to be

non-empty by Axiom 2.1. Create a list in the following way: List elements of Γ (Y )

with an arbitrary order. Since Y \Γ (Y ) is again finite, continue listing elements of

Γ (Y \Γ (Y )) with an arbitrary order; continue until every x ∈ Y is listed. Finally, let

ix denote the position of x in the list. For any x, y ∈ Y , construct xRy if ix ≥ iy.

For each x ∈ Y , it maximizes R among alternatives in R↓ (x) := {y : xRy}, hence

by construction c satisfies WARP over Ax
R↓(x) = {A ∈ A : r (A) = x}. Now construct

(≿x, Y ). Set y ≿x y for all y ∈ Y . For each y ∈ R↓ (x), since {x, y} ∈ Ax
R↓(x),

we set y ≿x x or x ≿x y or both according to c ({x, y}). For each y1, y2 ∈ R↓ (x)

such that y1 ≿x x and y2 ≿x x, since {x, y1, y2} ∈ Ax
R↓(x), we set y1 ≿x y2 or

y2 ≿x y1 or both according to c ({x, y1, y2}), this is guaranteed by the fact that c

satisfies WARP over Ax
R↓(x). Now, ≿x is complete on the set Px := {y : y ≿x x} ≡{

y ∈ R↓ (x) : y ∈ c ({x, y})
}

, which we call the prediction set of x. Now consider

Y \Px = {y : yRx or x ≻x y}. Set y1 ∼x y2 for all y1, y2 ∈ Y \Px and set y1 ≻x y2 for

all y1 ∈ Px, y2 ∈ Y \Px. The constructed (≿x, Y ) is now complete. For transitivity,

suppose y1 ≿x y2 and y2 ≿x y3, and that y1, y2, y3 ∈ Px (if any of them is in Y \Px

then the argument is straightforward by ∼x), hence y1 ∈ c ({x, y1, y2}) and y2 ∈
c ({x, y2, y3}). Furthermore, since y1, y2, y3 ∈ Px, we have {x, y1, y2, y3} ∈ Ax

R↓(x),
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and c satisfies WARP over Ax
R↓(x) implies y1 ∈ c ({x, y1, y2, y3}), and hence y1 ∈

c ({x, y1, y3}), which implies y1 ≿x y3. So (≿x, Y ) is transitive.

Finally, we show that (R, Y ) and {(≿x, Y )}x∈Y explain c. For any A ∈ A, since

A is finite and R is a linear order, there is a unique R−maximizer x ∈ A, hence A ∈
Ax

R↓(x). Suppose for contradiction y1 ∈ c (A) but y1 /∈ {y ∈ A : y ≿x z ∀z ∈ A}, so

y2 ≻x y1 for some y2 ∈ A. Then y1 /∈ c ({x, y1, y2}). Since {x, y1, y2} is a subset of A,

and both are in Ax
R↓(x), this is a violation of the statement c satisfies WARP on Ax

R↓(x),

hence a contradiction. Suppose for contradiction y2 ∈ {y ∈ A : y ≿x z ∀z ∈ A} but

y2 /∈ c (A). Consider any y1 ∈ c (A), since y2 ≿x y1, y2 ∈ c ({x, y1, y2}). Since

{x, y1, y2} is a subset of A, and both are in Ax
R↓(x), this is a violation of the statement

c satisfies WARP on Ax
R↓(x). Hence c (A) = {y ∈ A : y ≿x z ∀z ∈ A}. It remains to

show that each ≿x can be represented by a utility function, but this is standard since

Y is finite and ≿x is complete and transitive.

Now we prove the general case where Y is not finite. “If” is straightforward. I

prove “only if”. Using Lemma 2, let T be WARP and let Ψ be the identify function,

then there exists a linear order (R, Y ) such that c satisfies WARP over Ax
R↓(x) =

{A ∈ A : r (A) = x} for every x ∈ Y . It is obviously Ψ-consistent. Proceed to build

{(≿x, Y )}x∈Y using the method outlined in the proof of Lemma 3, which gives us a

complete and transitive ≿x for each x such that c (A) =
{
y ∈ A : y ≿r(A) z ∀z ∈ A

}
.

It remains to show that each ≿x can be represented by a utility function. Based

on our construction, ≿x is complete and transitive on Y . Moreover, it is continuous

(yn → y, zn → z, and yn ≿x zn for each n implies y ≿x z) when restricted to

the prediction set Px, otherwise a contradiction of Continuity would be detected in

the choices from a sequence of choice problems of form {x, yn, zn} that converges to

{x, y, z} (Px guarantees that x will not be the only one chosen in any of these sets, so

that a contradiction of, say, z ≻x y, will be substantiated in choice: z ∈ c ({x, y, z}))
. Therefore, along with the fact Px is a subset of the separable metric space Y ,

≿x admits a (continuous) utility function U : Px → [0, 1] that represents ≿x when

restricted to the alternatives in Px. Now define U (z) = −1 for all z ∈ Y \Px. Now U

also represents y ≻x z for all y ∈ Px and z ∈ Y \Px and z ∼x z′ for all z, z′ ∈ Y \Px.

And we are done. Finally, since our system of (R, Y ) and {(≿x, Y )}x∈Y explains c,

which satisfies Continuity, so c has a closed graph.
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A.2 Proof Outline of Theorems 2, 3, 4

The proofs for these theorems are repetitive and cannot be streamlined due to

domain-specific details, I outline key ideas here and relegate complete proofs to

Online Appendix B.

Step 1: Reference order R

In their respective domains, Definition 4, Definition 7, and Definition 10 pre-

scribe Ψ’s that are α-correspondences. Moreover, WARP, Independence, Station-

arity, and Quasi-linearity are finite theories. Therefore, Risk Reference Dependence
(Axiom 3.2), Time Reference Dependence (Axiom 4.2), and Equality Reference Depen-
dence (Axiom 5.2) each qualifies as a special case of the “meta” axiom Reference De-
pendence. By invoking Lemma 2, we obtain a linear order (R, Y ) that is Ψ-consistent

such that for all r ∈ ∆(X) (resp. r ∈ X × T and r ∈ [w,+∞)× [w,+∞)), c satisfies

WARP and Independence (resp. Stationarity, Quasi-linearity) over Ar
R↓(r).

Step 2: Fixed reference, standard representation

Next is to show that for each alternative r ∈ Y , the subcorrespondence
(
c,Ar

R↓(r)

)
admits a standard representation of its respective domain (i.e., expected utility,

exponential discounting, quasi-linear utility). This is not obvious; for example in

the risk domain, c satisfies WARP and Independence (and Continuity) over Ar
R↓(r),

which is a strict subset of all choice problems, so standard postulates could be

insufficient.33 This issue is resolved by exploiting the structure provided by a Ψ-

consistent linear order. In each domain, it guarantees that (for each r ∈ Y ) the

strict prediction set Pr
+ :=

{
p ∈ R↓ (r) : c ({p, r}) = {p}

}
is rich in a sense that be-

havior inconsistent with the structural properties can always be substantiated with

observations from within
(
c,Ar

R↓(r)

)
. For example in the risk domain, we first show

that an expected utility representation, with ur, can be obtained for subcorrespon-

dence (c,Ar
P) where P is a subset of Pr

+ and is a linear transformation of a |X| − 1

dimensional simplex set; the existence of P is given by the Ψ-consistent linear

33For example, if c ({p, q}) = {p} and c ({p′, q′}) = {q′} where p = 1
2x1 ⊕ 1

2x2, q = 3
4x1 ⊕ 1

4x3,
p′ = 1

2x2 ⊕ 1
2x3 and q′ = 1

4x1 ⊕ 3
4x3, then c satisfies WARP and Independence over {{p, q} , {p′, q′}}

but does not admit an expected utility representation (because, even though the lines pq and p′q′

are parallel, p, q are not related to p′, q′ by a common mixture).

40



order, which determines which alternatives are in R↓ (r) and in turn determines

which choice sets are in Ar
R↓(r). Then, for p, q in R↓ (r) but possibly outside P, if

argmaxz∈{p,q} Ezur (x) = {p}, it can be shown that there exist common mixtures

p′ = pαs, q′ = qαs in P such that c ({r, p′, q′}) = {p′}, and Independence requires

c ({r, p, q}) = {p} (assuming c ({r, p, q}) ̸= {r}). Analogous methods, all derived

using features of Ψ-consistent linear orders, guarantee the sufficiency of standard

postulates in the time and social preference domains.

Step 3: Reference-dependent preferences

Axiom 3.3, Axiom 4.3, and Axiom 5.3 each provides a “direction” for preference

change, along the reference order, that must has been satisfied in the constructed

representations. Axiom 3.3, Axiom 4.3, and Axiom 5.3 impose restrictions on be-

havior when a choice set expands, which necessarily imply that a reference point, if

it changes, ranks higher in R. If the constructed representations violate the direc-

tion of preference change from reference r to r′ where rRr′, then it can be shown

that there exist choice problems A ∈ Ar
R↓(r) and B ∈ Ar′

R↓(r′) such that B ⊂ A where

Axiom 3.3 / Axiom 4.3 / Axiom 5.3 is violated when we compare c (A) and c (B).

Like in Step 2, the existence of axiom-violating choice behavior in the underlying

subcorrespondences
(
c,Ar

R↓(r)

)
and

(
c,Ar′

R↓(r′)

)
is guaranteed by Ψ-consistent lin-

ear orders. For the time domain, Axiom 4.4 additionally guarantees a persistent

consumption utility, so that reference effect can be summarized by changes in dis-

count factors (in general, both discount factor and consumption utility can change).

A.3 Proof of Lemma 1

Only if: Fix A ∈ A and (x, t) ∈ Ψ(A). Consider S = {B ∈ A : (x, t) ∈ B ⊆ A}. For

any B1, B2 ∈ S, since (x, t) ∈ Ψ(B1) ∩ Ψ(B2), c satisfies WARP and Stationarity

over {B1, B2}. Therefore, c satisfies WARP and Stationarity over S (because WARP

and Stationarity are restrictions on pairs of choices). If: Take any B1, B2 such

that Ψ(B1) ∩ Ψ(B2) ̸= ∅. Take (x, t) ∈ Ψ(B1) ∩ Ψ(B2). Consider A = B1 ∪
B2. Since B1 and B2 are both finite, A is finite, and therefore A ∈ A. Since

(x, t) ∈ Ψ(B1) ∩ Ψ(B2), (x, t) ∈ Ψ(A), and so c satisfies WARP and Stationarity

over {B ⊆ A : (x, t) ∈ B}, which contains B1 and B2 by construction and we are

done.
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B Online Appendix: Omitted Proofs and Results

Let Y be an arbitrary set of alternatives and let A be the set of all finite and

nonempty subsets of Y , called choice problems or choice sets. Let C be the set

of all general choice correspondences c : B → A such that B ⊆ A and c (B) ⊆ B for

all B ∈ B. For a general choice correspondence with domain A, we simply call it a

choice correspondence. Call ĉ : S → A a subcorrespondence of c : B → A if S ⊆ B
and ĉ (B) = c (B) whenever defined. If, furthermore, S is finite, then call ĉ a finite
subcorrespondence of c.

A behavioral postulate imposed on general choice correspondences can be cap-

tured using a subset T of C, where some general choice correspondences are ad-

mitted and others excluded. In line with how behavioral postulates are typically

introduced, I focus on postulates that are easier to satisfy when fewer observations

are considered, and call them theories.

Definition 12.

1. T ⊆ C is a theory if for all c ∈ T , every subcorrespondence of c is in T .

2. T ⊆ C is a finite theory if it is a theory and for all c ∈ C\T , there exists a finite

subcorrespondence of c that is not in T .

Postulates that place restrictions on finitely many choice sets at a time are fi-

nite theories, such as the common definitions of WARP, monotonicity, transitivity,

convexity, betweenness, separability, independence, stationarity, and many others.

These are the cases where non-compliance can always be concluded using finitely

many observations. An empirically falsifiable property need not be a finite theory,

but a finite theory is empirically falsifiable unless it is trivial (i.e., T = C).34 Non-

examples include various versions of continuity and infinite acyclicity since they

require an infinite number of observations to substantiate a violation. When Y is

finite, every theory is trivially a finite theory.

34It is commonly understood that an empirically falsifiable property is one that can be falsified
with finitely many observations (i.e., there exists c ∈ C\T such that |dom (c) | < ∞). Consider the
combination of WARP and some version of continuity, it is a theory, and it is empirically falsifiable
since WARP needs just two observations to falsify. Yet in the absence of WARP violations, a choice
correspondence can still violate continuity, which is a non-compliance that cannot be substantiated
with finitely many observations.
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Imposing multiple postulates, T1 and T2, is equivalent to taking the intersection

T1 ∩ T2 ⊆ C. Because taking intersection of theories (resp. finite theories) yields

a theory (resp. finite theory), this characterization can simultaneously account for

multiple postulates (or, a model).35

B.1 Reference-dependent T

In general, it is possible that c : B → A is not in T but its subcorrespondence

ĉ : S → A is in T , for which I say “c satisfies T over S”. Lemma 2 provides the

foundation for all four models in this paper. It introduces a reference-dependent

generalization of a generic behavioral postulate, T , and shows that it is equivalent

to a representation in which observations are partitioned using a reference order R

such that T holds within each part.36

When Ψ is the identity function, the first condition in Lemma 2 is satisfied when,

for each choice problem A, some alternative x ∈ A serves as an anchor that guaran-

tees compliance with finite theory T in subsets of A. In anticipation, this anchor is

a potential reference alternative for A, so the condition can be understood as “there

is a reference in every A”. When Ψ is not the identity function, we further demand

that a potential reference alternative can be found in a predetermined subset of the

choice problem, Ψ(A) ⊆ A, making reference formation less subjective. The case

of fully objective reference is captured when Ψ(A) is a singleton for all A, since it

fully pins down the reference.

Note that since every choice set A ∈ B is finite, Reference Dependence is both falsi-

fiable (whenever T is) and can be written without an explicit existential quantifier.

However, the current formulation may be most suitable for describing a univer-

sal template of reference-dependent generalization. Applications of this formulation

without an existential quantifier are considered in Section 4 (time preference) and

Section 5 (social preference).

35Theory: Consider any c ∈ T1 ∩ T2. For any ĉ ∈ C where ĉ ⊂ c, since T1, T2 are theories, we have
ĉ ∈ T1, T2, and hence ĉ ∈ T1 ∩ T2, so T1 ∩ T2 is a theory. Finite theory: Suppose T1 and T2 are finite
theories, which are theories, and so T1 ∩ T2 is a theory. Consider any c ∈ C\ (T1 ∩ T2). Without loss
of generality say c /∈ T1, so by definition of finite theory we can find a finite subcorrespondence ĉ of
c where ĉ /∈ T1, which means ĉ /∈ T1 ∩ T2.

36Lemma 2 falls short of delivering the target utility representation (of T ) due to the well-known
limitation of an incomplete dataset—when only a subset of choices are observed, canonical postu-
lates may not be sufficient for canonical utility representation.
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B.2 Proof of Lemma 2

The proof for (2) implies (1) is straightforward: For every (finite) set A ∈ A,

the maximizer of the linear order R is an “x” in (1). We focus on the proof for

(1) implies (2). The proof for (2) implies (1) begins with an observation using

Zermelo’s well-ordering theorem and transfinite recursion, and then uses it build a

reference order given an arbitrary finite theory T (Definition 12).

Lemma 4. Let Z be a set and let Z be the set of all finite and nonempty subsets of Z.
Let R be a self-map on Z such that R (S) ⊆ S. Suppose for all T, S ∈ Z and x ∈ Z

such that x ∈ T ⊆ S, if x ∈ R (S), then x ∈ R (T ) (property α). Then, there exists a
self-map R∗ on Z such that

(i) For all S ∈ Z, R∗ (S) ⊆ R (S).

(ii) For all T, S ∈ Z and x ∈ Z such that x ∈ T ⊆ S, if x ∈ R∗ (S), then x ∈ R∗ (T )

(property α), and

(iii) For all S ∈ Z, |R∗ (S) | = 1

Proof. We prove this by construction. Assume and invoke Zermelo’s theorem (also

known as the well-ordering theorem) to well-order the set of all doubletons in the

domain of R. Now we start the transfinite recursion using this order.

In the zero case, we have R0 = R. This correspondence satisfies α and is

nonempty-valued (R0 (S) ̸= ∅ for all S ∈ Z).

For the successor ordinal σ + 1, having supposed Rσ satisfies α and is

nonempty-valued, we take the corresponding doubleton Bσ+1 and take x ∈ Bσ+1

such that ∀S ⊃ Bσ+1, R (S) \ {x} ̸= ∅. Suppose such an x does not exist, then for

both x, y ∈ Bσ+1, there are Sx ⊃ Bσ+1 and Sy ⊃ Bσ+1 such that Rσ (Sx) = {x}
and Rσ (Sy) = {y} since Rσ is nonempty-valued. Consider Sx ∪ Sy ∈ Z. Since

Rσ is nonempty-valued, Rσ (Sx ∪ Sy) ̸= ∅. But since Rσ satisfies α, it must be that

Rσ (Sx ∪ Sy) ⊆ Rσ (Sx) ∪ Rσ (Sy), hence Rσ (Sx ∪ Sy) ⊆ {x, y}. Suppose without

loss x ∈ Rσ (Sx ∪ Sy), then due to α again and that x ∈ Bσ+1 ⊂ Sy, it must be

that x ∈ Rσ (Sy), which contradicts Rσ (Sy) = {y}. (That is, we showed that with

nonempty-valuedness and α, no two elements can each have a unique appearance

in the R(·)-image of a set containing those two elements.) Hence, ∃x ∈ Bσ+1 such

that ∀S ⊃ Bσ+1, R (S) \ {x} ≠ ∅. Define Rσ+1 from Rσ in the following way:
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∀S ⊃ Bσ+1, Rσ+1 (S) := Rσ (S) \ {x}. Note: (i) Since x is deleted from Rσ (T )

only if it is also deleted (if it is in it at all) from Rσ (S) ∀S ⊃ T , we are preserving

α, and (ii) since x is never the unique element in Rσ (S) ∀S ⊃ Bσ+1, we preserve

nonempty-valuedness.

For a limit ordinal λ, define Rλ = ∩σ<λRσ. Note that since Rσ′ ⊂ Rσ′′ ∀σ′ >

σ′′, ∩σ≤σ̄ = Rσ̄. Furthermore, for any σ < λ, Rσ is constructed such that α and

nonempty-valuedness are preserved. Hence Rλ satisfies α and is nonempty-valued.

Note that this process terminates when all the doubletons have been visited, for

we would otherwise have constructed an injection from the class of all ordinals to

the set of all doubletons in Z, which is impossible.

Finally, we check that |Rλ (S) | = 1 for all S ∈ Z. Suppose not, hence ∃S ∈ Z
such that {x, y} ⊆ Rλ (S). Then by α we have {x, y} = Rλ ({x, y}), which is not

possible as the recursion process has visited {x, y} and deleted something from

R ({x, y}). Now set Rλ = R∗ and we are done.

For notational convenience, subcorrespondence ĉ : S → A of c : B → A is

referred to as (c,S), as in “c restricted to S”. Given B ⊆ A, for any S ⊆ Y and

x ∈ S, define

Ax
S := {A ∈ B : x ∈ A ⊆ S} .

Given T ⊆ C and a general choice correspondence c : B → A, let Γ (S) :=

{x ∈ S : (c,Ax
S) ∈ T } denote the set of reference alternatives of S (note that S need

not be in B). The following observations are obtained when T is a finite theory.

Lemma 5. Let c : B → A be a general choice correspondence and T a finite theory.
Consider A,B,D ⊆ Y .

1. If x ∈ Γ (A) and B ⊂ A, then x ∈ Γ (B).

2. If x ∈ Γ (A) for all finite A ⊆ D, then x ∈ Γ (D).

Proof. Since B ⊆ A implies Ax
B ⊆ Ax

A and since (c,Ax
A) ∈ T , (c,Ax

B) ∈ T is a

direct consequence of the definition of a theory. For (2), suppose for contradiction

x /∈ Γ (D). Because T is a finite theory, we can find a finite set of choice problems

S = {A1, ..., An} ⊆ Ax
D such that (c,S) /∈ T . Since the set A := ∪n

i=1Ai ⊆ D is

finite, x ∈ Γ (A). Note that S ⊆ Ax
A, so the definition of a theory gives (c,S) ∈ T , a

contradiction.
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Now I prove (1) implies (2) in Lemma 2. Let R′ : A → A ∪ {∅} be

a set-valued function that picks out reference alternatives, formally R′ (A) :=

{x ∈ A : (c,Ax
A) ∈ T }. Since T is a finite theory, by point 1 of Lemma 5, R′ sat-

isfies property α (defined in Lemma 4). Furthermore, (1) in Lemma 2 guarantees

that R′ (A) ∩ Ψ(A) is nonempty for all A ∈ A. Finally, define R : A → A by

R (A) := R′ (A) ∩ Ψ(A). Since both R′ (A) and Ψ(A) satisfy property α, R (A)

satisfies property α.

Putting the R we just built through Lemma 4, we get a function R∗ that picks

one thing from every set and satisfies property α. With this, we build the order

(R, Y ) by setting xRy if {x} = R∗ ({x, y}) and xRx for all x ∈ Y . It is well-known

that this results in a linear order (R, Y ) such that R∗ (A) = {x ∈ A : xRy ∀y ∈ A}
for all A ∈ A. Since R∗ (A) ⊆ R (A) ⊆ Ψ(A) for all A ∈ A, this means (R, Y ) is

also Ψ-consistent.

Finally, consider the set of alternatives that are “reference dominated” by x ac-

cording to R (including x itself), denoted by

R↓ (x) := {y ∈ Y : xRy} .

For any finite subset A ⊆ R↓ (x) such that x ∈ A, we have x∈ R∗ (A) ⊆ R (A) ⊆
R′ (A), which by definition implies x is a reference alternative of A. Using point 2

of Lemma 5, we conclude that x is reference alternative for R↓ (x), which need not

be finite.

To summarize, we have created a partition of A where the parts are charac-

terized by
{
Ax

R↓(x)

}
x∈Y

. To see this, take any A ∈ A, since R is a linear order,

there is a unique z ∈ A such that zRy for all y ∈ A, and so A ∈ Az
R↓(z) and

A /∈ Ay
R↓(y)

for any y ̸= z. Furthermore for each part Ax
R↓(x),

(
c,Ax

R↓(x)

)
is in T .

Since {B ∈ A : r (B) = z} is simply Az
R↓(z), the proof is complete.

B.3 Proof of Theorem 2

“If” is straightforward. I prove “only if”. We interpret ∆(X) as a |X| − 1 di-

mensional simplex, and full-dimensional means |X| − 1 dimensional. Also, where

conv ({δb, δw}) denotes the set of lotteries that only put non-zero probabilities on

prizes b and w, we partition ∆(X) into three parts: I = ∆(X) \conv ({δb, δw}),
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E1 =
{
r ∈ conv ({δb, δw}) : c ({r, p}) = {p} for some p ∈ R↓ (r) ∩ I

}
, and E2 =

conv ({δb, δw}) \E1. Stage 1 builds the reference order R. Stage 2 provides basic re-

sults about the prediction set of each reference lottery. Stage 3 builds a (Bernoulli)

utility function for each r ∈ I ∪ E1 and Stage 4 shows that they are related by

concave transformations. Stage 5 deals with r ∈ E2.

For any r ∈ ∆(X), let Pr
+ :=

{
p ∈ R↓ (r) \ {r} : c ({p, r}) = {p}

}
. For any r, p ∈

∆(X), let Pr
+p :=

{
q ∈ R↓ (r) \ {r, p} : c ({r, p, q}) = {q}

}
. We call these prediction

sets. Note that if rRp, then the fact that c satisfies WARP over Ar
R↓(r) implies Pr

+p ⊆
Pr
+. For any P ⊆ ∆(X) and lotteries p, q ∈ ∆(X), we call (p′, q′) a P-common

mixture of (p, q) if for some s ∈ ∆(X) and α ∈ [0, 1], we have p′ = pαs, q′ = qαs,

and p′, q′ ∈ P.

Stage 1: Reference order R

A binary relation R is said to be risk-consistent if qRp whenever pMPSq or pESq.

Note that Ψ is an α−correspondence. By Lemma 2, Axiom 3.2 gives a linear order

(R,∆(X)) where c satisfies WARP and Independence over Ar
R↓(r) for any r ∈ ∆(X).

Since R is Ψ-consistent (i.e., max (A,R) ∈ Ψ(A)) and Ψ({p, q}) = {q} if pMPSq or

pESq, so R is risk-consistent.

Stage 2: Technical Preparations

The next results guarantee that the revealed preference relation constructed using

subcorrespondence
(
c,Ar

R↓(r)

)
, where r is given, is complete and transitive on a

full-dimensional convex subset of ∆(X). This is due in large part to R being risk-

consistent, and because of it, choices that further satisfy Independence will have an

expected utility representation.

Lemma 6. For any r ∈ I and any open ball Br that contains r, Br ∩ R↓ (r) contains
a full-dimensional convex subset of ∆(X).

Proof. Take any r ∈ I. By definition, r (x) ̸= 0 for some x ∈ X\ {b, w}. Consider

the set C (r) := {r}∪ES ({r})∪MPS ({r} ∪ ES ({r})). It consists of r, all extreme

spreads of r, and all of their mean-preserving spreads.

To see C (r) is convex: First note that since ES ({r}) is a convex set and r

is on the boundary of ES ({r}), so {r} ∪ ES ({r}) is convex. Take any two lot-

teries p1, p2 ∈ C (r) and consider their convex combination (p1)
α (p2) for some
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α ∈ (0, 1). Since p1, p2 ∈ C (r), there exist e1, e2 ∈ {r} ∪ ES ({r}) such that ei-

ther p1 = e1 or p1MPSe1 and either p2 = e2 or p2MPSe2. If pi = ei for both

i = 1, 2, then (p1)
α (p2) = (e1)

α (e2) and by convexity of {r} ∪ ES ({r}) we are

done. Suppose pi ̸= ei for some i = 1, 2, then since the mean-preserving spread

relation is preserved under convex combinations, we have (p1)
α (p2)MPS (e1)

α (e2).

Then, since (e1)
α (e2) ∈ {r} ∪ ES ({r}) by the convexity of {r} ∪ ES ({r}), we have

(p1)
α (p2) ∈ MPS ({r} ∪ ES ({r})) ⊆ C (r).

To see C (r) is full-dimensional: For any p ∈ I, MPS ({p}) is |X−2| dimensional,

and it is a subset of the |X − 2| dimensional space defined by lotteries that have the

same mean as p. But ES ({p}) contains lotteries that do not have the same mean as

p, and therefore ES ({p}) ∪MPS ({p}) is full-dimensional. This means C (r) is full

dimensional as well since it contains ES ({p}) ∪MPS ({p}) for some p ∈ I.

To see C (r) ⊆ R↓ (r): If p ∈ ES ({r}), rRp since R is risk-consistent. If q ∈
MPS ({r} ∪ ES ({r})), qRp for some p ∈ {r} ∪ ES ({r}) since R is risk-consistent,

and by transitivity of R we have qRr. Since Br is also a full-dimensional and convex

set, Br ∩ C (r) is a full-dimensional convex subset of Br ∩R↓ (r).

Lemma 7. For any r ∈ I, Pr
+ contains a full-dimensional convex subset of ∆(X).

Proof. Fix r ∈ I. Note that Pr
+ contains an extreme spread e of r (else, there

is a sequence of alternatives ek = (δw)
αk (δb) such that αk converges from above

to r (w) such that r ∈ c ({r, ek}) for all k, which by Continuity means r ∈
c
({

r, (δw)
r(w) (δb)

})
, a violation of FOSD (Axiom 3.1)). Consider q = r0.5e ∈ I.

Since qESr, q ∈ R↓ (r). Since c satisfies Independence over Ar
R↓(r) and c ({r, e}) =

{e}, we establish q ∈ Pr
+ ∩ I. By Continuity, there exists an open ball Bq around

q such that c ({r, q′}) = {q′} for all q′ ∈ Bq. By Lemma 6, Bq ∩ R↓ (q) contains a

full-dimensional convex subset of ∆(X). Moreover, Bq ∩R↓ (q) ⊆ Bq ∩R↓ (r) ⊆ Pr
+,

hence Pr
+ contains a full-dimensional convex subset of ∆(X).

Lemma 8. Fix any r ∈ ∆(X). If p ∈ Pr
+ ∩ I, then Pr

+p contains a full-dimensional
convex subset of ∆(X). If Pr

+ ∩ I ̸= ∅, then Pr
+ contains a full-dimensional convex

subset of ∆(X).

Proof. Fix r ∈ ∆(X) and p ∈ Pr
+ ∩ I. Since p ∈ I, the set of extreme spreads of

p, ES (p), is nonempty. Also, ES (p) ⊆ R↓ (p) ⊆ R↓ (r). Since c satisfies WARP

over Ar
R↓(r) and p ∈ Pr

+, r /∈ c ({r, p, s}) for all s ∈ R↓ (r), so we can use the
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same technique in the proof of Lemma 7 to establish that Pr
+p contains an ex-

treme spread e of p (else, p ∈ c
({

r, p, (δw)
p(w) (δb)

})
by Continuity, which violates

FOSD (Axiom 3.1)). Consider q = p0.5e ∈ I. Because qESp and p ∈ R↓ (r), so

q ∈ R↓ (r). Since c satisfies Independence over Ar
R↓(r) and c ({r, p, e}) = {e}, we

establish q ∈ Pr
+p ∩ I. By Continuity, there exists an open ball Bq around q such

that c ({r, p, q′}) = {q′} for all q′ ∈ Bp. By Lemma 6, Bq ∩ R↓ (q) contains a full-

dimensional convex subset of ∆(X). Moreover, Bq ∩ R↓ (q) ⊆ Bq ∩ R↓ (r) ⊆Pr
+p,

hence Pr
+p contains a full-dimensional convex subset of ∆(X). The second state-

ment is given by the first statement and the observation that c satisfies WARP over

Ar
R↓(r) implies Pr

+p ⊆ Pr
+.

Stage 3: Expected utility when r ∈ I ∪ E1

Lemma 7 and Lemma 8 establish that when r ∈ I ∪ E1, Pr
+ contains a full-

dimensional convex subset of ∆(X). The next result shows that for every r ∈ I∪E1,

the subcorrespondence
(
c,Ar

R↓(r)

)
admits an expected utility representation.

Lemma 9. For any r ∈ ∆(X), if Pr
+ contains a full-dimensional convex subset of

∆(X), then there exists a strictly increasing utility function ur : X → R, unique
up to a positive affine transformation, such that c (A) = argmaxp∈A Epur (x) for all
A ∈ Ar

R↓(r).

Proof. Since Pr
+ contains a full-dimensional convex subset of ∆(X), consider a

subset P ⊆ Pr
+ that is a linear transformation of a |X| − 1 dimensional simplex

(hence also full-dimensional and convex). First, notice that for all p, q ∈ P, we

have {r, p, q} ∈ Ar
R↓(r) and r /∈ c ({r, p, q}). Recall that c satisfies WARP and In-

dependence over Ar
R↓(r). By letting p ≿r q if p ∈ c ({r, p, q}), we obtain a binary

relation (≿r,P) that is complete, transitive, continuous, and satisfies the standard

von Neumann-Morgenstern Independence, and it is well-known that there exists a

utility function ur : X → R, unique up to a positive affine transformation, such

that c (A) = argmaxp∈A Epur (x) for all A ∈ Ar
P. Since (≿r,P) satisfies FOSD (Ax-

iom 3.1), ur is strictly increasing. We normalize this function to ur : X → [0, 1]

where ur (w) = 0 and ub (b) = 1.

We now show that this utility function can explain
(
c,Ar

R↓(r)

)
. First, note that for

any two lotteries p, q ∈ ∆(X), there exist two (possibly different) lotteries p′, q′ ∈ P
such that (p′, q′) is a P-common mixture of (p, q). This can be done by taking an
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arbitrary s ∈ Int P and α large enough so that both p′ and q′ enter P (this is why

we need P to be full-dimensional and convex). Now consider any p ∈ R↓ (r) and

let (r′, p′) be a P-common mixture of (r, p). Since c satisfies Independence over

Ar
R↓(r), for i = r, p, i′ ∈ c ({r, r′, p′}) if and only if i ∈ c ({r, p}). Now take any p, q ∈

R↓ (r) such that p ∈ c ({r, p}) and q ∈ c ({r, q}), then again by Independence over

Ar
R↓(r), p

′ ∈ c ({r, p′, q′}) if and only if p ∈ c ({r, p, q}), where (p′, q′) is a P-common

mixture of (p, q). We have thus shown that c ({r, p}) = argmaxs∈{r,p} Esur (x) for

all {r, p} ∈ Ar
R↓(r) and c ({r, p, q}) = argmaxs∈{r,p,q} Esur (x) for all {r, p, q} ∈ Ar

R↓(r)

with p ∈ c ({r, p}) and q ∈ c ({r, q}). Since c satisfies WARP over Ar
R↓(r), showing

c (A) = argmaxp∈A Epur (x) for all A ∈ Ar
R↓(r) is straightforward from here.

Stage 4: Concave transformations when r1, r2 ∈ I ∪ E1

Lemma 10. For any r1, r2 ∈ I, if r1Rr2, then ur1 = f ◦ ur2 for some concave and
strictly increasing function f : [0, 1] → [0, 1].

Proof. This proof uses Axiom 3.3. Take any r1, r2 ∈ I such that r1Rr2. Consider

the function f̄ whose domain is the set of numbers {ur2 (x) : x ∈ X} such that

ur1 (x) = f̄ur2 (x). Since ur1 and ur2 are strictly increasing, f̄ is strictly increasing in

its domain.

We show that if x1 < x2 < x3, then f̄ (αur2 (x1) + (1− α)ur2 (x3)) ≥
αf̄ (ur2 (x1)) + (1− α) f̄ (ur2 (x3)) where α solves αur2 (x1) + (1− α)ur2 (x3) =

ur2 (x2). Suppose not, then there exists β, strictly greater than α, such that

f̄ (αur2 (x1) + (1− α)ur2 (x3)) < βf̄ (ur2 (x1)) + (1− β) f̄ (ur2 (x3)) < αf̄ (ur2 (x1)) +

(1− α) f̄ (ur2 (x3)). Consider the lotteries δ = δx2 and p = (δx1)
β (δx3). The above

equations give Eδur1 (x) < Epur1 (x) and Eδur2 (x) > Epur2 (x). Let (δ1, p1) be

a P-common mixture of (δ, p) where P is a full-dimensional convex subset of

Pr1
+r2 if c ({r1, r2}) = {r2} and of Pr1

+ otherwise (Lemma 8 guarantees the ex-

istence of P). Let (δ2, p2) be a P-common mixture of (δ, p) where P is a full-

dimensional convex subset of Pr2
+ . Since Eur1 explains

(
c,Ar1

R↓(r1)

)
and Eur2 explains(

c,Ar2
R↓(r2)

)
, we have c ({r1, δ1, p1}) = {p1} and c ({r2, δ2, p2}) = {δ2}. Now consider

A = {r1, r2, δ1, δ2, p1, p2}, which is in Ar1
R↓(r1)

, and so c (A) = argmaxq∈A Equr1 (x).

Because we have established Er2ur1 (x) < Ep1ur1 (x), Er1ur1 (x) < Ep1ur1 (x), and

Eδiur1 (x) < Epiur1 (x) for i = 1, 2 (the first two inequality are due to the way p1 was

picked), so we know c (A) ⊆ {p1, p2} . But c (A) ⊆ {p1, p2} and c ({r2, δ2, p2}) = {δ2}

51



jointly violate Axiom 3.3.

To complete the proof, extend f̄ to a concave function f : [0, 1] → [0, 1] (for

example by connecting points with lines).

Lemma 11. For any r ∈ E1∪E2 and p ∈ R↓ (r) \ {r}, either p first-order stochastically
dominates r or r first-order stochastically dominates p.

Proof. Take r ∈ E1 ∪ E2 and p ∈ R↓ (r), p ̸= r. Let α = r (b), then r (w) = 1 − α.

If p (b) < α and p (w) < (1− α), then r is an extreme spread of p and pRr, so

p /∈ R↓ (r). Furthermore, it is not possible that p (b) ≥ α and p (w) ≥ (1− α) since

p ̸= r. Hence either p (b) ≥ α and p (w) ≤ (1− α) with at least one strict inequality,

so p first-order stochastically dominates r, or p (b) ≤ α and p (w) ≥ (1− α) with at

least one strict inequality, so r first-order stochastically dominates p.

Lemma 12. For any r1, r2 ∈ I ∪E1, if r1Rr2, then ur1 = f ◦ ur2 for some concave and
increasing function f : [0, 1] → [0, 1].

Proof. We use the proof in Lemma 10 with the following modifications. When r2 ∈
E1, let (δ1, p1) be a P-common mixture of (δ, p), where P is a full-dimensional convex

subset of Pr1
+ . (Before, we let P be a full-dimensional convex subset of Pr1

+r2 when

c ({r1, r2}) = {r2}, but now such a subset may not exist since r2 /∈ I). Since δ2, p2 ∈
Pr2
+ and Lemma 11 guarantees δ2 and p2 each first-order stochastically dominates

r2, we replace the argument “Er2ur1 (x) < Ep1ur1 (x)” with “Er2ur1 (x) < Ep2ur1 (x)”.

Everything else goes through according to the proof in Lemma 10, giving the desired

result.

Stage 5: Expected utility when r ∈ E2 and concave transformations by con-

struction

We are left with r ∈ E2, the alternatives in conv ({δb, δw}) that are weakly pre-

ferred to everything they reference dominate. The construction of ur can be partly

arbitrary, where the main goal is to make sure they are related by concave transfor-

mations to other utility functions.

By definition of E2, Pr
+ ∩ I = ∅, so by Lemma 11 and FOSD (Axiom 3.1),

r first-order stochastically dominates p for all p ∈ R↓ (r) ∩ I. For any p ∈
R↓ (r)∩conv ({δb, δw}), FOSD requires the choice c({r, p}) to obey first order stochas-

tic dominance. Together, any strictly increasing utility function ur : X → [0, 1] will

accomplish c (A) = argmaxp∈A Epur (x) for all A ∈ Ar
R↓(r).
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We now construct ur so that it is related to other utility functions by concave

transformations. For any strictly increasing utility function up, consider the object

ρp =
(
ρp2, ..., ρ

p
|X|−1

)
∈ (0, 1)|X|−2 such that for all i ∈ {2, ..., |X| − 1},

ρpi =
up (xi)− up (xi−1)

up (xi+1)− up (xi−1)
(B.1)

(so ρpi satisfies up (xi) = ρpiup (xi+1) + (1− ρpi )up (xi−1)). There is a one-to-one rela-

tionship between up and ρp. Also, it is an algebraic exercise to show that up = f ◦uq

for some concave and strictly increasing f : [0, 1] → [0, 1] if and only if ρpi ≥ ρqi for

all i.

Fix r ∈ E2. Let ρr =
(
infp∈Kr (ρ

p
2) , ..., infp∈Kr

(
ρp|X|−1

))
, where Kr := (I ∪ E1) ∩

{p : pRr}, and subsequently construct ur using Equation B.1, which is possible as

long as Kr is nonempty. Note that when r /∈ {δb, δw}, r must be the mean preserving

spread of something in I, so I ∩ {p : pRr} is nonempty, and so Kr is nonempty. In

the exception where r ∈ {δb, δw} and Kr is empty, this implies rRp for all p ∈
∆(X) \ {δb, δw}. Then, we let

ρri =
1

2
(1) +

1

2
sup

p∈∆(X)\{δb,δw}
ρpi

for all i and construct ur using Equation B.1. For any p ∈ ∆(X) \ {r}, this construc-

tion results in ρri ≥ ρpi for all i, with equality for p that also falls into this exception

(there are at most two of them, δb and δw).

We now show that for any r1, r2 ∈ ∆(X) where r1Rr2, we have ρr1i ≥ ρr2i for

all i. This is already shown for any r1, r2 ∈ I ∪ E1 by Lemma 12. It is also already

shown for the special cases in the preceding paragraph, by careful construction.

Hence, we restrict attention to the remaining cases. Suppose ρr1i < ρr2i for some

i. Then infp∈Kr1
(ρpi ) < ρr2i , so ρpi < ρr2i for some p ∈ Kr1. However, since R is

transitive, p ∈ Kr1 implies pRr2; and since p ∈ I ∪ E1, this contradicts Lemma 12.

Say r1 ∈ I ∪ E1, r2 ∈ E2, but ρr1i < ρr2i for some i. Then ρr1i < infp∈Kr2
(ρpi ), so

ρr1i < ρpi for all p ∈ Kr2. But r1 ∈ Kr2, a contradiction. Finally, for r1, r2 ∈ E2, either

Kr1 = Kr2 or Kr1 ⊊ Kr2. If it is the former, it is immediate that ρr1 = ρr2. If it is the

later, then ρr1i = infp∈Kr1
(ρpi ) ≥ infp∈Kr2

(ρpi ) = ρr2i for all i, as desired.

Thus, we have now shown that for any r1, r2 ∈ ∆(X) such that r1Rr2, ρr1i ≥ ρr2i
for all i, or equivalently ur1 = f ◦ ur2 for some concave and strictly increasing
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f : [0, 1] → [0, 1].

B.4 Proof of Theorem 3

“If” is straightforward, where compliance with Axiom 4.4 is shown in a footnote. I

prove “only if”. In Stage 1, we show that with Axiom 4.1 and Axiom 4.2, for any

time τ ∈ T , the set of all choice problems such that the earliest payment arrives

at time τ can be explained by a nonempty set of Discounted Utility specifications,

where a typical element of this set is a utility function and a discount factor. In Stage

2, we show that at least one (consumption) utility function u can be supported for

all τ ∈ T , and for each τ ∈ T we set as δ̂τ the corresponding discount factor

associated with u for τ ; this is the more involved portion of the proof and it uses

Axiom 4.4. In Stage 3, with Axiom 4.3, we show the desired relationship between

δ̂τ and δ̂τ ′ for any two τ, τ ′. Note that the representation constructed has discount

factors indexed by time, not alternatives, so in Stage 4 we convert them back to

alternatives.

Stage 1: DU representation for each τ ∈ T

By Lemma 1 and Lemma 2, for any x ∈ X and τ ∈ T , c satisfies WARP and Station-

arity over S(x,τ) := {A ∈ A : (x, τ) ∈ Ψ(A)} (the collection of choice sets such that

the earliest timed payment is (x, τ)). In fact, WARP and Stationarity hold even when

we consolidate the collection of choice problems where the earliest payment arrives

at the same time (although the payments themselves may be different), which we

now show. Let S(·,τ) := ∪x∈XS(x,τ).

Lemma 13. For any τ ∈ T , c satisfies WARP and Stationarity over S(·,τ).

Proof. Take any two choice sets A,B ∈ S(·,τ). Suppose it is not true that c satisfies

WARP or Stationarity over {A,B}. Therefore, it must be that Ψ(A) ∩ Ψ(B) = ∅.

Now let’s take the worse payment at τ for each set: (x∗, τ) ∈ A such that x∗ ≤ x for

all (x, τ) ∈ A and (y∗, τ) ∈ B such that y∗ ≤ y for all (y, τ) ∈ B. Suppose without

loss of generality x∗ < y∗ (due to Ψ(A)∩Ψ(B) = ∅). By Axiom 4.1, adding (x∗, τ) to

B would not alter the choice, i.e., c (B ∪ {(x∗, τ)}) = c (B). Let B∗ := B ∪ {(x∗, τ)};

note that A and B∗ are both in S(x∗,τ), and therefore c satisfies WARP or Stationarity

over {A,B∗}. If it is Stationarity that is violated between A and B, then it is also
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violated between A and B∗, a contradiction. If it is WARP that is violated between

A and B, it remains to show, due to (x∗, τ) ∈ A, if A ⊆ B then A ⊆ B∗ and there is

a contradiction, whereas if A ⊇ B then A ⊇ B∗ and there is a contradiction.

We just established that c satisfies WARP and Stationarity over S(·,τ). This

will give us, from the choices in
(
c, S(·,τ)

)
, a revealed preference relation on

{(x, t) ∈ X × T : t ≥ τ} that is complete, transitive, continuous, and satisfies sta-

tionarity, and then it is well-known (Fishburn and Rubinstein (1982)) that along

with Axiom 4.1 we obtain (many) Discounted Utility (DU) representations, for in-

stance by translating the time-index by −τ so that time τ is, in that instance, time

0.

Stage 2: uτ can coincide with u0 for each τ ∈ T

With existence guaranteed, arbitrarily pick a DU representation with parameters(
δ̂0, u0

)
that explains

(
c, S(·,0)

)
. Define U0 : X × R≥0 → R by U0 (x, t) := δ̂t0u0 (x).

For every τ ∈ (0, t̄), arbitrarily pick a DU representation
(
δ̃τ , ũτ

)
that explains(

c, S(·,τ)
)

and define Uτ : X × R≥0 → R by Uτ (x, t) := δ̃tτ ũτ (x). We proceed to

show that for every τ ∈ (0, t̄), there exists a DU representation
(
δ̂τ , uτ

)
that ex-

plains
(
c, S(·,τ)

)
where uτ = u0. Fix a τ . This boils down to identifying a certain

relationship between U0 and Uτ due to the fact that they are DU representations

and Axiom 4.4—indifferences are preserved under a common delay multiplier λ.

Fact 1. For any τ ∈ [0, t̄), t ≥ 0, and q ≥ 0, Uτ (x, 0) = Uτ (y, t) if and only if
Uτ (x, q) = Uτ (y, q + t).

Lemma 14. For any x ∈ (a, b) (resp. x = a and x = b), there exists an open interval
B = (x−, x+) ⊆ (a, b) (resp. proper interval B = [a, x+

a ) where x+
a < b and proper

interval B = (x−
b , b] where x−

b > a) that contains x such that for some unique λ ∈
R, U0

(
z1, t̃1

)
= U0

(
z2, t̃2

)
if and only if Uτ

(
z1, t̂1

)
= Uτ

(
z2, t̂1 + λ

(
t̃2 − t̃1

))
for all

z1, z2 ∈ B.

Proof. Fix any x ∈ (a, b). Consider i ∈ {0, τ}. Since Ui (·, ·) is continuous and de-

creasing in it’s second argument, there exists q ∈ (i, t̄) such that c ({(a, i) , (x, q)}) =
{(x, q)}. Since there exists an open interval in (i, t̄) that contains q, by continuity

of Ui (·, ·), there exists an open interval Oi in X that contains x such that x′ ∈ Oi
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implies c ({(a, i) , (x, q) , (x′, q′)}) = {(x, q) , (x′, q′)} for some q′ ∈ (i, t̄). Observation:

for every x1, x2 ∈ Oi such that x1 < x2, since we have c ({(a, i) , (x, q) , (x1, t1)}) =
{(x, q) , (x1, t1)} for some t1, c ({(a, i) , (x, q) , (x2, t2)}) = {(x, q) , (x2, t2)} for some

t2, and Lemma 13, we have c ({(x1, i) , (x2, i+ t2 − t1)}) = {(x1, i) , (x2, i+ t2 − t1)}
in

(
c, S(·,i)

)
.

Now consider an open interval (x−, x+) ⊆ Oτ ∩ O0 that contains x. Consider

any x1, x2, z ∈ (x−, x+) where x1 < z < x2. We show an intermediate result that

(i) U0 (x1, 0) = U0 (z, αzt) = U0 (x2, t) if and only if (ii) Uτ (x1, 0) = Uτ (z, αzt
′) =

Uτ (x2, t
′). Say (i) holds (for some αz). Due to the observation, x1, x2 ∈ O0, and

Lemma 13, we have c (A) = A where A = {(x1, 0) , (z, αzt) , (x2, t)}. Due to the

observation and x1, x2 ∈ Oτ , we have c ({(x1, τ) , (x2, τ + t′)}) = {(x1, τ) , (x2, τ + t′)}
for some t′. Consider the choice set B = {(x1, τ) , (z, τ + αzt

′) , (x2, τ + t′)}, and

note that B is related to A by transforming the time of each timed payment in A

from t̂ to λ∗t̂ + d∗, where λ∗ = t′

t
and d∗ = τ . Then, invoking Axiom 4.4 gives

c (B) = B, which gives (ii) as desired. The converse, (ii) implies (i), can be shown

analogously. Due to Fact 1, we also note that U0 (x1, 0) = U0 (z, αzt) = U0 (x2, t) if

and only if Uτ (x1, 0) = Uτ (z, αzt
′) = Uτ (x2, t

′).

Consider any z1, z2, z3, z4 ∈ (x−, x+). There exist x1, x2 ∈ (x−, x+) such that

zi ∈ (x1, x2) for all i. The intermediate result gives, for all i, j ∈ {1, 2, 3, 4},

U0 (x1, 0) = U0 (zi, αit) = U0 (x2, t) if and only if Uτ (x1, 0) = Uτ (zi, αit
′) = Uτ (x2, t

′),

so U0 (zi, αit) = U0 (zj, αjt) if and only if Uτ (zi, αit
′) = Uτ (zj, αjt

′), so by Fact 1,

U0 (zi, 0) = U0 (zj, (αj − αi) t) if and only if Uτ (zi, 0) = Uτ (zj, (αj − αi) t
′), which

means U0 (zi, 0) = U0

(
zj, t̃

)
if and only if Uτ (zi, 0) = Uτ

(
zj, λt̃

)
where λ = t′

t
.

Note that λ is independent of i, j, hence the same λ applies to relate z1, z2 and to

relate z3, z4. Invoking Fact 1 once more completes the proof for the existence of

λ. Since λ = t′

t
, where t, t′ are the unique solutions to U0 (x1, 0) = U0 (x2, t) and

Uτ (x1, 0) = Uτ (x2, t
′), therefore λ is unique (for the given x ∈ (a, b)).

For x = a and x = b, the proof is similar other than we replace open intervals

(x+, x−) with half-open intervals [a, x+
a ) and (x−

b , b].

Lemma 15. There exists λ ∈ R such that for all x∗ ∈ X, U0 (a, 0) = U0 (x
∗, t∗) if and

only if Uτ (a, 0) = Uτ (x
∗, λt∗). Moreover, λ is unique.

Proof. Let C :=
{
[a, x+

a ), (x
−
b , b]

}
∪{(x+

x , x
−
x ) : x ∈ (a, b)} be the collection intervals

guaranteed by Lemma 14. Note that C is an open cover of the closed and bounded
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interval [a, b], so a finite subcover C̄ is guaranteed by the Heine–Borel theorem.

Consider a finite sequence of intervals in C̄, (Bk)
K
k=1, such that the first interval is

B1 = [a, x+
a ), last interval is BK = (x−

b , b], and for all k ∈ {1, K − 1}, Bk ∩Bk+1 ̸= ∅.

This is guaranteed by the fact that C̄ is a cover of [a, b] and the intervals in C̄
are open except for [a, x+

a ) and (x−
b , b]. Then, for every two consecutive intervals

Bk, Bk+1, the unique λ’s guaranteed by Lemma 14, one for Bk and another for

Bk+1, must coincide due to the nondegenerate intersection Bk ∩ Bk+1. Iterating

through this finite sequence of intersecting consecutive intervals guarantees, for

every x∗ ̸= a, an increasing sequence of payments (xk)
M
k=1 such that x1 = a, xM = x∗,

and for some λ, U0 (xk, 0) = U0 (xk+1, t) if and only if Uτ (xk, 0) = Uτ (xk+1, λt) for all

k ∈ {1, ...,M − 1}. The rest is straightforward using Fact 1 (for example if M = 3,

we have U0 (a, 0) = U0 (x1, t1) = U0 (x
∗, t∗) if and only if Uτ (a, 0) = Uτ (x1, λt1) =

Uτ (x
∗, λt1 + λ (t∗ − t1)), which completes the proof since λt1+λ (t∗ − t1) = λt∗).

To recover λ, take any x1, x2 ∈ X such that x1 < x2. For some t and t′,

U0 (x1, 0) = U0 (x2, t) and Uτ (x1, 0) = Uτ (x2, t
′). Then since we must have λt = t′,

we have λ = t′

t
. With Lemma 15, we conclude that

(
δ̂τ , uτ

)
where uτ = u0 and

δ̂τ = δ̂−λ
0 is a DU representation for

(
c, S(·,τ)

)
.

The analysis thus far was for τ ∈ (0, t̄). When τ = t̄, since every choice problem

in S(·,t̄) contains only timed payments that pay at time t̄, a DU representation is

trivially established with any positive δ̂t̄ and any strictly increasing ut̄. Therefore,

we set ut̄ = u0 and δ̂t̄ = supτ∈[0,t̄) δ̂τ (this is why we cannot guarantee δ̂t̄ < 1, even if

Axiom 4.1 gives us δ̂τ ∈ (0, 1) for all τ). From now on, we remove subscript τ from

uτ and simply write u.

Stage 3: δ̂τ ≥ δ̂τ ′ for all τ > τ ′

If τ = t̄, this is trivial from the construction of δ̂t̄. Consider any τ, τ ′ ∈ [0, t̄).

Continuity of Uτ (x, q) = δ̂qτu (x) and Uτ ′ (x, q) = δ̂qτ ′u (x) guarantee the existence

of y > a such that c ({(a, τ) , (y, t)}) = {(a, τ) , (y, t)} and c ({(a, τ ′) , (y, t′)}) =

{(a, τ ′) , (y, t′)} for some t, t′ ∈ T , with which we obtain δ̂ττu (a) = δ̂tτu (y) and

δ̂τ
′

τ ′u (a) = δ̂t
′

τ ′u (y). Note that by Axiom 4.1, δ̂τ , δ̂τ ′ < 1, so t − τ > 0 and

t′ − τ ′ > 0. Suppose for contradiction δ̂τ ′ > δ̂τ , then t′ − τ ′ > t − τ , or equivalently

t′ > τ ′ + t − τ . Note also that τ ′ − τ < 0 implies τ ′ + t − τ < t. So t, t′ ∈ T implies

(y, τ ′ + t− τ) ∈ X × T . Putting together what we established, we have τ ′ < τ < t,
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τ ′ < τ ′+t−τ , δ̂ττ ′u (a) < δ̂τ
′

τ ′u (a) = δ̂t
′

τ ′u (y) < δ̂τ
′+t−τ

τ ′ u (y), and δ̂tτ ′u (y) < δ̂τ
′+t−τ

τ ′ u (y),

which implies c ({(a, τ ′) , (y, τ ′ + t− τ) , (a, τ) , (y, t)}) = {(y, τ ′ + t− τ)}. By Conti-

nuity of Uτ (x, q) and Uτ ′ (x, q), if we consider y− ϵ for some ϵ > 0 sufficiently small,

we have c ({(a, τ ′) , (y − ϵ, τ ′ + t− τ) , (a, τ) , (y − ϵ, t)}) = {(y − ϵ, τ ′ + t− τ)} and

c ({(a, τ) , (y − ϵ, t)})= {(a, τ)}, which jointly contradict Axiom 4.3 because τ ′ =

τ + d and τ ′ + t− τ = t+ d where d = τ ′ − τ > 0.

Stage 4: R and δ(x,t)

Create a complete, transitive, and antisymmetric R on Y such that t < t′ im-

plies (x, t)R (x′, t′), which involves an arbitrary completion between when (x, t)

and (x′, t′) when t = t′, and set, for every (x, t) ∈ Y , δ(x,t) := δ̂t.

B.5 Proof of Theorem 4

“If” is straightforward. I prove “only if”. Stage 1 and Stage 2 show that with

Axiom 5.2 and Axiom 5.1, for each Gini coefficient g, the set of all choice problems

where the most balanced alternative has Gini coefficient g can be explained by the

maximization of x̃ + v̂g (ỹ) for some unique v̂g : [w,+∞) → R. Stage 3 shows that

g < g′ implies v̂g (y) − v̂g (y
′) ≥ v̂g′ (y) − v̂g′ (y

′) for all y > y′. Stage 4 builds the

reference order R using Gini coefficient and arbitrary completion.

Stage 1: x+ v(x,y) (y) for each alternative (x, y) ∈ Y

Fix (x, y) ∈ Y . Like before, let R↓ ((x, y)) := {(x′, y′) ∈ Y : G ((x, y)) ≤ G ((x′, y′))},

P(x,y) :=
{
(x′, y′) ∈ R↓ ((x, y)) : (x′, y′) ∈ c ({(x′, y′) , (x, y)})

}
, and A := A(x,y)

R↓((x,y))
=

{A ∈ A : (x, y) ∈ argminz∈AG (z)}.

By Axiom 5.2, c satisfies WARP over A. By Theorem 1, there exists a utility

function U : Y → R that explains (c,A).
Note that for all (x′, y′) ∈ R↓ ((x, y)), U (x′, y′) ≥ U (x, y) if and only if (x′, y′) ∈

P(x,y). Since c satisfies Quasi-linearity over A (Axiom 5.2), U restricted to the do-

main P(x,y) (which contains (x, y) itself) must be a strictly increasing transformation

of x̃ + v(x,y) (ỹ) for some unique v(x,y) : [w,+∞) → R. Figure B.1 provides an illus-

tration of how v(x,y) is constructed, and x̃+v(x,y) (ỹ) is our target, quasi-linear, utility

function. It is straightforward that for all A ∈ A such that A ⊆ P(x,y), the maximiza-
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Figure B.1: This figure illustrates the construction of v(x,y) for a fixed (x, y) ∈ Y .
The space Y is divided into three regions: (1) Between the two diagonal lines
are alternatives in Y \R↓ ((x, y)), they have lower Gini coefficients than (x, y), and
therefore they appear in a choice problem where (x, y) is the reference. The alter-
natives in R↓ ((x, y)) are then split into two groups: (2) those that are chosen when
(x, y) is the reference, P(x,y), and (3) those that are not, R↓ ((x, y)) \P(x,y). These
two groups are separated by the indifference curve passing through (x, y), the red
curve, which partially constructs v(x,y) (partial because Gini coefficient truncates the
space). The rest of v(x,y) can be constructed by using an indifference curve that con-
nects (x+ a, y) and (x∗ + a, y∗), the purple curve, where G ((x, y)) = G ((x∗, y∗)),
c ({(x, y) , (x∗, y∗)}) = {(x, y) , (x∗, y∗)}, and (x+ a, y) , (x∗ + a, y∗) ∈ P(x,y).

tion of x̃+ v(x,y) (ỹ) gives c (A). Next, we show that this consistency applies to other

A ∈ A. For any (x′, y′) ∈ R↓ ((x, y)) \P(x,y), there is no A ∈ A such that (x′, y′) ∈
c (A), so we just need to guarantee x′+v(x,y) (y

′) < x+v(x,y) (y). Suppose for contra-

diction this inequality fails. Since for some a we have {(x+ a, y) , (x′ + a, y′)} ⊆
P(x,y), and therefore (x′ + a, y′) ∈ c {(x, y) , (x+ a, y) , (x′ + a, y′)}, the fact that

{(x, y) , (x+ a, y) , (x′ + a, y′)} and {(x, y) , (x′, y′)} are both in A but (x′, y′) /∈
c ({(x, y) , (x′, y′)}) (because (x′, y′) /∈ P(x,y)) contradicts c satisfies Quasi-linearity

over A. It remains to consider the consistency of x̃ + v(x,y) (ỹ) for alternative

(x′, y′) /∈ R↓ ((x, y)), but this is immediate since there is no A ∈ A such that

(x′, y′) ∈ A. So x̃+ v(x,y) (ỹ) explains (c,A).

Stage 2: x+ v̂g (y) for each Gini coefficient g

Fix g ∈ [0, 0.5), we now show that v(x,y) must coincide for all (x, y) where

G ((x, y)) = g. Consider the collection of choice sets S := {A ∈ A : minz∈AG (z) = g}.
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It turns out that c satisfies WARP and Quasi-linearity over S. To see this,

take any two choice problems A1, A2 in S. For each i = 1, 2, there must

be an alternative (xi, yi) ∈ Ai such that G ((xi, yi)) = g and G ((x′, y′)) ≥ g

for all other (x′, y′) in Ai. Consider an income distribution (x∗, y∗) such that

x∗ ≤ min{x1, x2} and y∗ ≤ min {y1, y2} and G ((x∗, y∗)) = g. Due to (xi, yi) ∈
Ψ(Ai ∪ {(x∗, y∗)}), Axiom 5.2, and Axiom 5.1, we have c (Ai) = c (Ai ∪ {(x∗, y∗)})
for i = 1, 2. But (x∗, y∗) ∈ Ψ(A1 ∪ A2 ∪ {(x∗, y∗)}), so by Axiom 5.2 again, between

c (A1 ∪ {(x∗, y∗)}) and c (A2 ∪ {(x∗, y∗)}), which as established are equal to c (A1)

and c (A2) respectively, WARP and Quasi-linearity must hold. Since c satisfies WARP

and Quasi-linearity over S, there is a unique v̂g : [w,+∞) → R such that the utility

function x̃ + v̂g (ỹ) explains (c,S). But every v(x,y) constructed in Stage 1 is also

unique, and A(x,y)

R↓((x,y))
⊆ S if G ((x, y)) = g, so v(x,y) must coincide for all (x, y) such

that G ((x, y)) = g.

Stage 3: g < g′ implies v̂g (y)− v̂g (y
′) ≥ v̂g′ (y)− v̂g′ (y

′) for all y > y′

Finally we show that the constructed v̂g (y)
′ s are systematically related. Consider

any g, g′ ∈ [0, 0.5) such that g < g′ (reminder: lower g implies greater attainable

equality) and any y, y′ ∈ R≥0 such that y > y′. Define v̄g := v̂g (y) − v̂g (y
′) and

v̄g′ := v̂g′ (y)− v̂g′ (y
′). We want to show v̄g ≥ v̄g′. Suppose not, our goal is to find a

contradiction of Axiom 5.3 in choice behavior.

Let z be a number such that v̄g < z < v̄g′. Consider (xg′ , w) , (xg, w) ∈ Y

such that G ((xg′ , w)) = g′ and G ((xg, w)) = g, which exist because G ((x̃, w)) is

continuous and increasing in x̃ from G ((w,w)) = 0 to limx→+∞ G ((x,w)) = 0.5

and g, g′ ∈ [0, 0.5). Consider x := z + ∆, x′ := 2z + ∆ for some ∆ > 0 such

that g′ ≤ min ({G ((x, y)) , G ((x′, y′))}) and x′ > x > max ({xg′ , xg}), where ∆

exists because for any fixed ȳ, G ((x̃, ȳ)) is asymptotically increasing in x̃ and

limx→+∞ G ((x, ȳ)) = 0.5, and g′ ∈ [0, 0.5). Essentially, we have introduced ref-

erence points (xg′ , w) , (xg, w) that will not be chosen (due in part to Axiom 5.1),

forcing the choice to be between (x, y) and (x′, y′).

We now use the constructed alternatives, (x, y) , (x′, y′) , (xg′ , w) , (xg, w), to

demonstrate a violation of Axiom 5.3. For the choice problem {(x, y) , (x′, y′) , (xg′ , w)},

(xg′ , w) is the reference (so v̂g′ is used) and cannot be chosen. Since v̄g′ > z, or
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equivalently z+ v̂g′ (y) > 2z+ v̂g′ (y
′), we have x+ v̂g′ (y) > x′+ v̂g′ (y

′), and therefore

c ({(x, y) , (x′, y′) , (xg′ , w)}) = {(x, y)} . (B.2)

By analogous arguments, z > v̄g gives c ({(x, y) , (x′, y′) , (xg, w)}) = {(x′, y′)} (v̂g is

used), which also gives

c ({(x, y) , (x′, y′) , (xg′ , w) , (xg, w)}) = {(x′, y′)} . (B.3)

due to Axiom 5.2 and G ((xg, w)) = g ≤ g′ = G ((xg′ , w)). Since y > y′, Equation B.2

and Equation B.3 jointly contradict Axiom 5.3.

Stage 4: R on Y

Create a complete, transitive, and antisymmetric R on Y such that G ((x, y)) <

G ((x′, y′)) implies (x, y)R (x′, y′), which involves an arbitrary completion when

G ((x, y)) = G ((x′, y′)).

B.6 Proof of Propositions 1, 2, 3

I focus on showing that WARP (1) and structural postulate (2) are independently

sufficient for the standard model (3). The remaining statements, that WARP and

structural postulates are necessary for standard models ((1) if (3) and (2) if (3)),

and that WARP is sufficient and necessary for a (general) utility representation ((1)

if and only if (4)), are well-known and omitted.

Proof of Proposition 1: (1) / (2) implies (3)

Suppose a choice correspondence c admits an AREU representation with specifi-

cation (R, {ur}r). Suppose c satisfies WARP or Independence (or both). We first

show that ur = us for all r, s ∈ ∆(X) \conv ({δb, δw}). Suppose without loss of

generality rRs. Suppose for contradiction ur ̸= us, then the fact that ur is a con-

cave transformation of us and that both functions are normalized to [0, 1] implies

ur (x) > us (x) for all x ∈ X\ {b, w}. Consider the set τs := conv ({s, δb, δw}). The

interior of this set, Intτs, consists of lotteries that are extreme spreads of s, hence

Intτs ⊆ R↓ (s) ⊆ R↓ (r). By Axiom 3.1, c ({δb, r}) = c ({δb, s}) = δb. Then by
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Continuity, there exist open balls around δb, Br and Bs, such that they contain lot-

teries that are chosen over r and s respectively. Now consider an open subset S of

Br ∩ Bs ∩ Intτs. Since ur (x) > us (x) for all x ∈ X\ {b, w}, we can find lotteries

p, q ∈ S such that Epur (x) > Equr (x) and Epus (x) < Equs (x). This means

c ({r, s, p, q}) = {p} and (B.4)

c ({s, p, q}) = {q} . (B.5)

Consider t ∈ S, p′ = 1
2
p⊕ 1

2
t, and q′ = 1

2
q ⊕ 1

2
t, then p′, q′ ∈ S, and therefore

c ({s, p′, q′}) = {q′} . (B.6)

Finally we conclude that Equation B.4 and Equation B.5 jointly violate WARP,

whereas Equation B.4 and Equation B.6 jointly violate Independence.

Next we turn to r ∈ conv ({δb, δw}) and show that ur is either identical, or has the

freedom to be identical, to us where s ∈ ∆(X) \conv ({δb, δw}). If r = δb or r = δw or

R↓ (r) ⊆ conv ({δb, δw}), then any strictly increasing ur can explain c over Ar
R↓(r) :={

A ∈ A : A ⊆ R↓ (r) and r ∈ A
}

, so we can just pick one that is identical to us for

every s ∈ ∆(X) \conv ({δb, δw}). If r doesn’t satisfy any of those conditions, then

there exists s2 ∈ ∆(X) \conv ({δb, δw}) such that r is an extreme spread of s2 and

there exists s1 ∈ R↓ (r) \conv ({δb, δw}). This implies us2 is a concave transformation

of ur (because s2Rr) and ur is a concave transformation of us1 (because rRs1), but

we already showed that us1 = us2 (since s1, s2 ∈ ∆(X) \conv ({δb, δw})), so ur is

identical to us for all s ∈ ∆(X) \conv ({δb, δw}). We conclude that if either WARP

or Independence (or both) holds, then c admits an expected utility representation.

Proof of Proposition 2: (1) / (2) implies (3)

Suppose a choice correspondence c admits a PEDU representation with specification

({δr}r , u). We show that if δr ̸= δr′ for some r, r′ ∈ [0, t̄), then c violates both WARP

and Stationarity. (δt̄ only plays a role for choice problems A ∈ A where every

alternative has t = t̄, so we set it as δt̄ = δ0.)

Suppose for contradiction δr ̸= δr′ for some r, r′ ∈ [0, t̄). Say without loss of

generality r > r′ ≥ 0, then δr > δr′ ≥ δ0. Recall that X = [a, b]. Consider alternatives

(b−∆x, 0) , (b, 0 + ∆t) ∈ X × T such that (i) ∆x ∈ (0, b− a), (ii) ∆t ∈ (0, t̄− r),
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(iii) δ0ru (b−∆x) < δ0+∆t
r u (b), and (iv) δ00u (b−∆x) > δ0+∆t

0 u (b), which is possible

due in part to the assumption that (b, t̄) ∈ c ({(a, 0) , (b, t̄)}). Note that (i) and (ii)

guarantee (b−∆x, 0) , (b, 0 + ∆t) , (b−∆x, r) , (b, r +∆t) ∈ X × T . Then, (iii) gives

c ({(b−∆x, r) , (b, r +∆t)}) = {(b, r +∆t)} , (B.7)

and (iv) gives

c ({(b−∆x, 0) , (b, 0 + ∆t)}) = {(b−∆x, 0)} and (B.8)

c ({(a, 0) , (b−∆x, r) , (b, r +∆t)}) = {(b−∆x, r)} , (B.9)

where Equation B.9 is due in part to the assumption that (b, t̄) ∈ c ({(a, 0) , (b, t̄)})
as it excludes (a, 0) from being uniquely chosen. Now note that Equation B.7 and

Equation B.8 jointly violate Stationarity, whereas Equation B.7 and Equation B.9

jointly violate WARP. We conclude that if either WARP or Stationarity (or both)

holds, then c admits an exponential discounting utility representation.

Proof of Proposition 3: (1) / (2) implies (3) Suppose a choice correspondence

c admits an FSPU representation with specification {vr}r. We show that if vr (y) −
vr (y

′) ̸= vr′ (y) − vr′ (y
′) for some r, r′ and y > y′, then c violates both WARP and

Quasi-linearity.

Suppose for contradiction vr (y)−vr (y
′) ̸= vr′ (y)−vr′ (y

′) for some r, r′ ∈ [0, 0.5)

and y > y′. Without loss of generality, say r > r′ ≥ 0. Then vr (y)−vr (y
′) < vr′ (y)−

vr′ (y
′) ≤ v0 (y) − v0 (y

′), and therefore there exist x̃, x̃′ ∈ [w,+∞) such that x̃′ +

vr (y
′) > x̃+vr (y) and x̃′+v0 (y

′) < x̃+v0 (y). Consider (x∗, y∗) ∈ Y such that y∗ = w

and G ((x∗, y∗)) = r, which is possible since G ((·, w)) is continuous and increasing

in it’s first argument from G ((w,w)) = 0 to limx→+∞ G ((x,w)) = 0.5. Since for any

fixed ȳ, G ((·, ȳ)) is asymptotically increasing in it’s first argument, there exists ∆ >

0 such that min ({G ((x̃+∆, y)) , G ((x̃′ +∆, y′))}) ≥ r and min ({x̃+∆, x̃′ +∆}) >
x∗. Let x := x̃+∆ and x′ := x̃′+∆. We have now established that (i) min ({x, x′}) >
x∗ ≥ w,min ({y, y′}) ≥ y∗ = w, (ii) min ({G ((x, y)) , G ((x′, y′))}) ≥ G ((x∗, y∗)) = r,

(iii) x′ + vr (y
′) > x+ vr (y), and (iv) x′ + v0 (y

′) < x+ v0 (y).
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Then, (i), (ii), and (iii) together give

c ({(x∗, y∗) , (x, y) , (x′, y′)}) = {(x′, y′)} , (B.10)

whereas (i) and (iv) together give

c ({(w,w) , (x, y) , (x′, y′)}) = {(x, y)} and (B.11)

c ({(w,w) , (x+ ϵ, y) , (x′ + ϵ, y′)}) = {(x+ ϵ, y)} ∀ϵ > 0. (B.12)

Note that Equation B.10 and Equation B.12 jointly violate Quasi-linearity. Sep-

arately, by WARP, Equation B.10 and Equation B.11 imply c ({(x, y) , (x′, y′)}) =

{(x′, y′)} and c ({(x, y) , (x′, y′)}) = {(x, y)} respectively, which is also a contradic-

tion. We conclude that if either WARP or Quasi-linearity (or both) holds, then c

admits a quasi-linear utility representation.
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