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Abstract

I study how past and future choices are linked in the framework of atten-

tion. Attention cannot be observed but past choices are necessarily considered

in future decisions. This link connects two types of rationality violations,

counterfactual and realized, where the former results from inattention and the

latter fully pins down preferences. Results show that the necessary traces of

limited attention lie within choice sequences because they enable and compel

a decision maker to correct their “mistakes”. The framework accommodates

different attention structures and extends to framing, introducing choice se-

quences as an important channel to formulate, identify, and scrutinize limited

attention.
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1 Introduction

The generalization of a standard theory to explain “non-standard” behavior benefits

from richer data; intuitively, data can compensate for the added flexibility. Observ-

ing reference points, endowments, or status quo reconciles behaviors that contradict

a single, consistent preference.1 Observing menu preferences helps test the hypoth-

esis of temptation and enables studies of self-control and addiction.2 Observing

compound lottery and multi-dimensional risk brings new insights to traditional risk

preference anomalies like the Allais paradox.3 These datasets are appreciated be-

cause they are useful and innovative, even if they change the ways data have to

be collected. Can a dataset that is useful but ubiquitous also receive consideration?

Stochastic choice is one example,4 choice sequences could be another.

The growing literature on limited consideration has thus far zoomed in on a

choice problem to study an attention mechanism, investigating the possibility of

a search process that considers a subset of alternatives or a rule of thumb that

eliminates alternatives from final decisions. This paper zooms out and studies how

the evolution of choices can hint at the role of attention even if no assumptions are

imposed on attention structures.

Limited consideration occurs when a decision maker (DM) fails to consider ev-

ery alternative in every choice set. It results in seemingly irrational decisions even

if the DM has a standard and consistent preference, thereby capturing a straightfor-

ward form of bounded rationality that has received substantial attention.5 But its

simplicity and intuitiveness is not without cost. Attention being inherently hard to

observe can leave us with multiplicity of estimated preferences, which burdens our

1For example, Kahneman and Tversky (1979); Munro and Sugden (2003); Sugden (2003);
Masatlioglu and Ok (2005); Ortoleva (2010); Masatlioglu and Nakajima (2013); Masatlioglu and
Ok (2014); Dean et al. (2017); Kovach (2020); Ellis and Masatlioglu (2022).

2For example, Gul and Pesendorfer (2001, 2007); Dekel et al. (2009); Noor (2011); Dillenberger
and Sadowski (2012); Ahn et al. (2019); Freeman (2021).

3For example, Segal (1990); Dillenberger (2010); Lanzani (2022); Chew et al. (2022); Halevy
and Ozdenoren (2022); Zhang (2023); Ke and Zhang (2023).

4For example, Gul and Pesendorfer (2006); Manzini and Mariotti (2014); Gul et al. (2014); Fu-
denberg et al. (2015); Brady and Rehbeck (2016); Aguiar (2017); Echenique et al. (2018); Cattaneo
et al. (2020); Kovach and Tserenjigmid (2022); Kovach and Suleymanov (2023); Kibris et al. (2024).

5Earliest work traceable to Wright and Barbour (1977)’s discussion of consideration set, related
applications in marketing and finance that include Hauser and Wernerfelt (1990); Roberts and Lattin
(1991), and related choice theories that include Manzini and Mariotti (2007); Masatlioglu et al.
(2012); Cherepanov et al. (2013).
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analysis of economic consequences and welfare. Moreover, the model specification

that x receives attention in choice problem A but not in choice problem B is almost

impossible to test with a within-subject design; once the DM experiences A and

pays attention to x, would she immediately forget x when asked to choose from B?

This paper addresses these issues by linking past and future choices, allowing an

analyst to exploit the wealth of information contained in the natural evolution of

choices. The innovation lies in the primitive—a dataset of choice sequences, which

departs from the standard “one-shot” setting where the DM makes one real choice.

This is accompanied by an intuitive assumption: past choices should be auto-

matically considered when the DM makes future decisions. Then, decisions from

the same choice set that vary with experience hint at a mechanism of evolving at-

tention. Moreover, because choices must become more informative, a latter choice

that contradicts an earlier choice reveals true preference. This contributes to neces-

sary pleasantries: either behavior is standard, or its “non-standard” manifestation

reveals unobserved parameters. It turns out that this simple assumption, captured

using an axiomatic foundation, allows us to test the hypothesis of limited consider-

ation using realized choices, confirm “mistakes”, and fully identify preferences.

To illustrate, suppose you are unaware of the vacation destination Penang (an

island in my country Malaysia) even though you can afford it, so an analyst who

observes your choice of Hawaii may falsely jump to the conclusion that you prefer

Hawaii over Penang by the theories of revealed preferences. However, when you

attend a conference in Southeast Asia, you might consider and choose Penang for

a drop-by vacation. This incident makes Penang then and forever an option you

are aware of, and your future decisions of whether to return to Penang will more

informatively convey your true preference between Penang and other destinations.

The underlying intuition applies broadly: A DM who uses the iPad may or may

not have considered a Surface Go, but a DM who converted to an iPad from a Sur-

face Go probably prefers iPad to Surface Go. A person who reads physical books

may actually prefer e-readers, but one who left e-readers for physical books proba-

bly prefers physical books. A colleague who has not begun to referee papers could

be a remarkable reviewer, but one who used to do so yet is no longer invited may

not be the best reviewer.

To learn from this intuition, consider a DM with an Attention Across Time (AAT)

representation. The DM has a subjective attention function that determines what
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she would normally consider from each choice set A, denoted by Γ (A). Moreover,

the DM’s past experiences, h, identifies a collection of previously chosen alternatives

that will continue to be considered, denoted by c (h). The DM’s decision therefore

solves

c̃ (h) (A) = max
x∈Γ(A)∪(c(h)∩A)

u (x) .

Of course, past experiences h are historical choice problems, so elements of c (h)

come from the same procedure, just at an earlier time. This contrasts the “standard”

DM who has full attention Γ (A) = A, for whom the problem reduces to the familiar

c̃ (h) (A) = max
x∈A

u (x) .

The first inquiry helps us understand the behavioral content of this model; three

key axioms that relate past and future choices underpin AAT behavior. Weak Stabil-
ity (Axiom 1) imposes restriction on behavior over time: in contrast to full compli-

ance with WARP, it allows for one-time switches between every pair of alternatives.

Past Dependence (Axiom 2) limits the way past choices may affect future choices;

specifically, if a recent experience affects the choice from the current choice set,

then the new choice is limited to the recently chosen alternative. The third and last

axiom captures the behavioral signature of attention. First, revealed preference is

defined when observed choices suggest that the DM is aware of y when x is cho-

sen. Specifically, when x is chosen over y after y was previously chosen, or when x

is chosen from a choice set where y is chosen “by default”. Default Attention (Ax-

iom 3) posits that if x is revealed preferred to y, then y will never be chosen from a

choice set where x is chosen by default. The axiom essentially says that the default

choice from a choice set should receive attention in that choice set no matter the

history, and therefore a subjectively inferior alternative should never be chosen. All

three axioms are trivially satisfied in the conventional setting with only one period

of choice.

Then, a series of straightforward observations forms the core of this paper: ex-

ploring what economists can learn from the wealth of information in choice se-

quences.

The first observations concern the identification of preferences. Preferences are

pinned down. To illustrate the intuition, suppose a WARP violation occurs between

the choice of x from {x, y} and the choice of y from {x, y, z}. It turns out that if we
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present the “problematic” choice sets in an alternating order, then the DM is bound

to consider both x and y in the second problem, resulting in a choice that reveals

their preference.6 This key empirical strategy leverages the fact that an experienced

DM has considered more options and therefore their choices more informatively

convey genuine preference. Moreover, it is possible to identify preferences using

just one carefully designed sequence of choice sets. On the other hand, attention Γ

cannot be pinned down even with the richer dataset of choice sequences, but the

set of possible attention functions can be characterized using a maximal set that

allows an analyst to overestimate or underestimate attention.

The second observations study the link between limited attention and rational-

ity violations. To see its relevance, note that limited attention can result in “non-

standard” behavior, but it is not immediately clear whether it must. An investigation

into this link begins with a distinction between two kinds of rationality violations:

those that occur on a counterfactual basis and those that will realize.7 Counterfac-

tual violations are typically observed in a between-subject design, where a popula-

tion of subjects makes inconsistent decisions from randomly assigned choice prob-

lems; it means some subjects are predisposed to commit these violations. It turns

out that the lack of counterfactual violations cannot rule out limited attention. A

simple example illustrates a DM who never commits counterfactual violations but

is inconsistent with full attention due to history-dependent behavior.

Unlike counterfactual violations, realized violations come from the continuous

observation of one DM—when they are seen choosing x over y at some point and

y over x in others. It turns out that full attention is ruled out if and only if the DM

commits realized WARP violations. If no violations of this kind can be detected,

then the DM is observationally identical to one with full attention. These observa-

tions suggest that realized violation provides the true test for limited attention even

though it is inexorably obscured in studies that focus on one-shot decisions.

But where does the attention function Γ come from? Because AAT only im-

poses structure on attention across time, its silence on attention structures invites

6If genuine preference is u (x) > u (y), then the sequence of choice sets ({x, y} , {x, y, z}) pro-
duces choices (x, x) and the sequence of choice sets ({x, y, z} , {x, y}) produces choices (y, x), both
cases reveal that x is preferred to y. The opposite holds for u (y) > u (x). Subsection 3.2 provides
details and an illustration using Figure 3.1. Online Appendix B Example 12 describes a test using a
population of DMs.

7Subsection 3.3 provides a formal definition and an illustration using Figure 2.1.
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a complementary relationship with models that propose structures for Γ. Masatli-

oglu et al. (2012) propose a theory about the intrinsic nature of consideration sets,

that the removal unconsidered alternatives should not affect what is considered.

It can be shown that if the attention function in AAT satisfies this structure, then

future attention, even though it is evolving as it adapts to past experiences, will

continue to satisfy this structure. The same can be said for the models proposed by

Manzini and Mariotti (2007) and Manzini and Mariotti (2012) where criteria like

shortlisting and categorization are used to exclude alternatives from final consid-

eration—future attention stems from revised shortlists and re-categorizations. As

a consequence, even though accumulating experience improves decisions, the DMs

do not fundamentally depart from their intrinsic attention structures.

A complete characterization of compatible models suggests that the ultimate

content of AAT is the correction of WARP violations. One-shot models that have

this feature are compatible with AAT, and it allows us to connect attention across
time and attention across choice sets, providing a robust framework of limited con-

sideration and proposing new ways to test and verify inattention.

Last, the framework is extended to incorporate framing, which enables an anal-

ysis of how different frames can affect a DM’s current behavior and future attention.

It begins with a general representation that captures framing in full generality. Dif-

ferent frames can draw the DM’s attention to different alternatives even though the

choice set is fixed. Successful frames induce lasting consideration for the future.

Special cases of framing are then introduced and characterized, namely ordered
lists where the DM considers alternatives from top to bottom but may stop at some

point and recommendations where certain alternatives are made salient. In both

cases, postulates are imposed on choice sequences, proposing new empirical direc-

tions to test whether and how framing works. The model formalizes a number of

intuitive observations, such as the futile repetition of unsuccessful frames and the

crucial role that genuine preference (or quality) plays in the facilitation of lasting

consideration.

The findings of this paper are undoubtedly limited—there is more to learn from

choice sequences—but they underscore a broader agenda of using richer data, in

place of assumptions, to learn from individual behavior. If we believe that behavior

is boundedly rational, then choice sequences emerge as an important dataset that

allows an analyst to observe and study the correction of "mistakes". Whether correc-
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tions occur, when they occur, and how they occur each contributes significantly to

a comprehensive examination of bounded rationality. Limited consideration is only

one of many possible examples.

I proceed as follows: Related literature comes next. Section 2 introduces the

primitive and the axiomatic foundation. Section 3 introduces AAT and basic results

regarding identification and rationality violations. Section 4 analyzes different at-

tention structures in the literature to investigate the link between attention across

time and attention across choice sets. Section 5 extends the framework to incor-

porate frames and studies the short- and long-term effects of framing on choices

and attention. Section 6 concludes. Appendix A contains main proofs. Online

Appendix B contains omitted proofs and results.

1.1 Related Literature

Closest to AAT is the choice theory literature that studies attention using con-

sideration sets, even though this literature has not considered the evolution of

choices. Masatlioglu et al. (2012)’s choice with limited attention belongs to this

category, Lleras et al. (2017) study consideration sets that preserve considered al-

ternatives in subsets, and Geng (2022) introduces triggers and capacity. Other

heuristics and choice procedures can also give rise to consideration sets, includ-

ing Manzini and Mariotti (2007)’s rational shortlist method, Manzini and Mari-

otti (2012)’s categorize-then-choose, and Cherepanov et al. (2013)’s rationalization,

Rideout (2021)’s justification and Geng and Özbay (2021)’s shortlisting procedure
with capacity, where potentially superior alternatives are eliminated from final de-

cisions.8 These studies complement AAT’s silence on attention structures; in turn,

AAT suggests how choice sequences can serve as a new channel to study inattention.

Different methods have been deployed to infer preference under limited atten-

tion. Masatlioglu et al. (2012)’s CLA already has this feature, inferring attention

partially identifies preference. Caplin and Dean (2011) and Caplin et al. (2011)

study search processes that take place by observing tentative choices in a single

choice problem. Manzini and Mariotti (2014) and Cattaneo et al. (2020) exploit

the richness in stochastic choice to pin down preference; Kovach and Suleymanov

8Similar procedures that study the iterative scrutiny of alternatives can be found in Xu and Zhou
(2007); Apesteguia and Ballester (2013); Yildiz (2016)
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(2023) additionally consider reference-dependent distributions of consideration

sets. Gossner et al. (2021) study how behavior may react to the exogenous ma-

nipulation of attention.

The general intuition that past behavior can influence future behavior is shared

elsewhere. In static settings, Gilboa and Schmeidler (1995); Gilboa et al. (2002)

study case-based utility where a case can be past experiences, Bordalo et al. (2020)

study how a database of past experiences can affect the evaluation of alternatives

through different perceived norms. Models of habit formation consider DMs who

are affected by the past and attempt to shape future behavior (Gul and Pesendorfer,

2007; Rozen, 2010; Tserenjigmid, 2020; Hayashi and Takeoka, 2022).

The extension to frames relates to a general setting studied in Salant and Ru-

binstein (2008)’s choice with frames. Guney (2014) studies deterministic behavior

under observable lists whereas Manzini et al. (2021); Tserenjigmid (2021); Ishii

et al. (2021) study stochastic behavior/data. Cheung and Masatlioglu (2024) study

observable recommendation and use stochastic choice data to reveal the influence

of recommendation on both attention and utility. This paper adds to the literature

new ways to test, analyze, and use frames—using choice sequences.

2 Setup

2.1 Primitive

Let X be a countable set of alternatives and let A be the set of all finite subsets of X

with at least two elements.9 Let XN be the set of all infinite sequences of alternatives

and let AN be the set of all infinite sequences of choice sets. The primitive is a choice

function that assigns to each infinite sequence of choice sets an infinite sequence of

choices,

c : AN → XN,

where for every sequence of choice sets (An) ∈ AN and any natural number

k, the corresponding choice c ((An))k is an element of the corresponding choice

9The exclusion of singleton choice sets is to avoid passive choices, since “choosing” something
without a choice might not result in awareness/consideration. All results go through if we let A be
the set of all finite and nonempty subsets of X.
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set (An)k.
10 The first choice (when k = 1) can be treated as the first deci-

sion since the DM enters the analyst’s observation. I sometimes write Ak for

(An)k. Denote by X̂ the set of alternatives that are ever-chosen, i.e., X̂ :=

{x ∈ X : c ((An))i = x for some (An) and i}.11 Like more standard primitives, this

dataset can be extracted from a population of DMs each randomly assigned to a

sequence.12

To focus on how past choices affect future choices (instead of the opposite),

the scope of this paper is limited to situations in which two sequences of choice

sets that are identical up to a certain point give the same choices up to that point.

This property, henceforth future independence, rules out choices that are made with

perfect foresight of future choice sets. Formally, for any (An) , (Bn) ∈ AN, if Ak = Bk

for all k ≤ K, then c ((An))k = c ((Bn))k for all k ≤ K.

Then, c can be decomposed into an object more familiar to most economists:

a collection of history-dependent choice functions. Formally, let A<N be the set of

all finite sequences of choice sets, including the empty sequence denoted by ∅. For

each history of choice sets h ∈ A<N, denote by

c̃ (h) : A → X

the one-shot choice function that assigns a choice to each upcoming choice set (right

after h). Each c̃ (h) captures a cross-section of the original primitive c, illustrated

in Figure 2.1. Due to future independence,
{
c̃ (h) |h ∈ A<N

}
is fully and uniquely

pinned down. Choice without (observable) history is captured by c̃ (∅), and I refer

to it as c0 for convenience.
10Even though I work with infinitely long choice sequences, the main representation theorem only

requires choice sequences to have at least length 4.
11There is at most one never-chosen alternative, since the set of all binary choice sets leaves at

most one alternative never chosen.
12The concern that a DM can only be observed under one sequence of choice sets does not pro-

hibit us from discussing what the DM would have chosen from other choice sequences. The same
limitation applies to standard settings where we consider a DM who produces a choice for each of
multiple choice sets. The solution is to use a between-subject design with random assignments. If
a population of subjects is each randomly assigned to choice set A or choice set B, and aggregate
data presents a WARP violation, then we know that some subjects are predisposed to commit WARP
violations. Online Appendix B Example 12 describes this approach for choice sequences.
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Figure 2.1: Each rectangle is made up of one-shot choice sets; therefore, a sequence
of choice sets includes at most one choice set from each rectangle. The solid path
represents (part of) a sequence of choice sets.

2.2 Axioms

Aligned with the motivation of this paper, all three axioms impose restrictions on

choices across time; they are trivially satisfied if choice sequences were not consid-

ered. The first two axioms provide basic structure.

Axiom 1 (Weak Stability). For any (An) ∈ AN and h < i < j, if c ((An))h = x,
c ((An))i = y ̸= x, x ∈ Ai, and y ∈ Aj, then c ((An))j ̸= x.

Axiom 1 imposes a version of the infamous weak axiom of revealed preferences

(WARP) with two key differences.13 First, it is imposed within a sequence of choice

problems (An) ∈ AN. In particular, there is no restriction on how choices differ

across sequences.14 Second, it does so without demanding full compliance with

WARP, but limits the instances of WARP violations. A conforming DM may switch

between x and y, but she does not go back and forth between them.

To illustrate, suppose a DM first chooses x in the presence of y and then chooses

y in the presence of x. The latter choice violates WARP, and it may be due to the

13There are many (roughly) equivalent definitions for WARP, I use “if x is chosen in y’s presence,
then y is never chosen in x’s presence”.

14Let A = {x, y, a} and B = {x, y, b}. Suppose sequence one (A,B,B,B, ...) produces (x, b, b, b, ...)
and sequence two (B,A,A,A, ...) produces (y, a, a, a...), then choosing x over y in A but the opposite
in B is a WARP violation across sequence, but there is no violation of Axiom 1.
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emerging consideration of y. Axiom 1 does not exclude this behavior, but it posits

that from here on, the choice between x and y has finalized. In other words, the DM

may “flip” but must not “flip-flop”. A DM who never switches automatically satisfies

this axiom.

Axiom 2 (Past Dependence). For any (A1, ..., AK) ∈ A<N and B ∈ A,

c̃ ((A1, ..., AK)) (B) ∈ {c̃ ((A1, ..., AK−1)) (B) , c̃ ((A1, ..., AK−1)) (AK)} .

Axiom 2 allows past choices to affect future choices. One way to understand

this axiom is to first consider the removal of “c̃ ((A1, ..., AK−1)) (AK)”. In that case,

the DM’s choice after history (A1, ..., AK) does not depend on whether or not she

had experienced AK , i.e., choices are past independent. Axiom 2 weakens past

independence by allowing for one type of departure: the next choice is exactly the

choice it succeeded, c̃ ((A1, ..., AK−1)) (AK). That is, after facing a history of choice

sets (A1, ..., AK), what a DM chooses from B is either what she would have chosen

had she not experienced AK or exactly what she just chose from AK . The postulate

is therefore a delimited weakening of past independence. First, even though past

choices may affect future choices, it must do so in a period-by-period manner; this

provides tractability and important testable predictions. Moreover, said effect is

limited to “helping” the recently chosen alternative to be chosen again; other forms

of past dependence remain prohibited.

The next and last axiom embodies the behavioral signature of attention. Recall

that c0 (A) denotes the choice from A without (observable) history. Consider a

definition of revealed preference that captures the analyst’s inference that x is better

than y. This relationship is identified either when x is chosen over y when y was

chosen in the past or when x is chosen from a choice set that y is chosen when there

is no observable history. Formally, for distinct x and y, let xPy if at least one of the

following is true for some (An) ∈ AN: (1) c ((An))j = x, y ∈ Aj and c ((An))i = y

such that i < j or (2) c ((An))j = x such that c0 (Aj) = y.

Axiom 3 (Default Attention). If c0 (A)Py, then y /∈ c̃ (h) (A) for all h ∈ A<N.

Axiom 3 restricts how a DM can depart from her default choice in a choice set.

Specifically, it posits that if the default choice from A, denoted by c0 (A), is identified

to be better than y, then y is never going to be chosen from A (no matter the
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history). Intuitively, it captures the idea that certain alternatives will always receive

attention when they appear in certain choice sets (regardless of the history), hence

“default attention”. These may be the most salient alternatives insofar as to attract

attention: pizza is always in the consideration set for football night, even though

the additional consideration of satay (Malaysian skewers) depends on whether the

DM has learned of this dish. In general, since DM was not born into the analyst’s

observation, default attention may be interpreted as the attention structure formed

in the (unobserved) past.

3 Model

3.1 Attention Across Time

We are ready for the main representation theorem. Denote by c (h) the set of (pre-

viously) chosen alternatives in the history h, i.e., c ((A1, ..., AK)) := {c̃ (∅) (A1)} ∪
{c̃ ((A1)) (A2)} ∪ {c̃ ((A1, ..., Ak−1)) (Ak) : k = 3, ..., K} .

Definition 1. c admits an Attention Across Time (AAT) representation if there exist

a utility function u : X → R and an attention function Γ : A → 2X\ {∅}, where

Γ (A) ⊆ A, such that

c̃ (h) (A) = argmax
x∈Γ̃(h)(A)

u (x)

where Γ̃ (h) (A) = Γ (A) ∪ (c (h) ∩ A).

Theorem 1. c satisfies Axioms 1, 2, and 3 if and only if it admits an Attention Across
Time (AAT) representation.

AAT suggests the following choice procedure: When a DM faces choice set B,

she not only considers alternatives that she would always consider when she faces

B but also the alternatives that she had chosen in the past. The former is history-
independent and may capture what is salient (to her) in the underlying choice prob-

lem. The latter is history-dependent and receives her attention due to her past expe-

riences. The intuition is straightforward—a DM may be unaware of certain alterna-

tives, but she must be aware of the alternatives that she had chosen, which depend

on her past experiences.
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Attention structures The generality of Γ puts no restriction on choice behav-

ior without history—every c0 is consistent with every utility function under some

Γ—but AAT imposes on what happens next.15 For example, consider Masatli-

oglu et al. (2012)’s use of attention filter to explain why, although x is preferred

to y, it is chosen from {x, y} but not from {x, y, z}. A possible specification is

Γ ({x, y}) = {x, y}, Γ ({x, y, z}) = {y, z}. AAT accommodates this specification,

but it further imposes that if x is chosen from {x, y} in the past, then x must be

considered when the DM faces {x, y, z} in the future, i.e., x /∈ Γ ({x, y, z}) but

x ∈ Γ̃ ({x, y}) ({x, y, z}). Section 4 provides a comprehensive examination of “at-

tention across time” as related to “attention across choice sets”.

Inferring preference An analyst knows definitively that the DM prefers a to b if

she chose b in the past and chooses a over b in the future, since both a and b are

within the consideration set of the latter choice problem. In fact, one way to elicit

such preference is to first introduce a choice set under which the DM would choose

b, and then ask the DM to choose from a choice set from which she would normally

choose a. This simple observation helps pin down preferences even if attention can-

not be directly observed. Subsection 3.2 investigates further and proposes empirical

strategies to reveal preference.

Variety of experience Does having more experience help the DM make better de-

cisions? The model adds details to this intuition. Better decisions ultimately come

from an expanding c (h), but facing the same problem repeatedly does not con-

tribute to the expansion of c (h), even though h becomes longer. Instead, the variety

of past experiences is key to expanding c (h). To see this, note that if two identical

choice sets are faced consecutively, the choice from the latter must coincide with

the choice from the former, because the consideration set has not expanded. This

means the second decision adds nothing to c (h). Similar arguments can be made if

a choice set is repeated but not consecutively. Curiously, increased experience can

result in better decisions that appear “irrational”, Subsection 3.3 provides details.

History-dependent decisions Different alternatives can be chosen from the same

choice set at different points in history, even if the DM is never indifferent and has

15For any c0 : A → X, let Γ (A) = {c0 (A)} for all A and use any utility function.
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no noise in their decisions. Although this qualifies as a (trivial) WARP violation,

their occurrence counter-intuitively suggests that the DM used to be “irrational,” be-

cause she chose a sub-optimal option, but has since become more rational through

the consideration of better options. Subsection 3.4 delves deeper into the signifi-

cance of history-dependent behaviors.

Relevance of experience Certain types of past experiences are more useful than

others, and this depends on what the future entails. To see this, suppose x is added

to c (h) but there is no future choice set that contains x, then the increased aware-

ness of x will not improve future decisions. The same limitation holds if future

choice sets that contain x also contain superior alternatives that are themselves

considered, since x will not be chosen anyway. Therefore, the relevance of expe-

rience holds greater long-term value than sheer quantity of experience. Section 5

investigates the effects of framing on future attention; it cautions against using

frames to “help” a DM because short-term benefits can result in harmful long-term

inattention.

Other theories Choice sequences can invite interest in other theories excluded

in AAT. One possibility is learning, where a DM initially unsure of her preference

discovers that she doesn’t like something after consuming it, causing her to change

her behavior in the future. The DM can violate Axiom 1 by switching back and

forth. To see this, consider a DM in her Penang vacation where she first tries petai,
realizes that it is not as good, and then tries tempoyak only to find out that it

is worse, sticking to petai for the rest of her trip. Other DMs may be building

a bundle to seek variety, or deliberately randomizing, or simply being stochastic;

these behaviors violate Axiom 2 because the axiom requires the same alternative to

be chosen when a choice set is repeated consecutively.16

3.2 Identification of Parameters

Next, a series of observations assert that standard economics problems that concern

welfare and incentives, which rely on the identification of preferences, are possible

to study even when the analyst cannot directly observe attention.

16Deliberately randomize: Agranov and Ortoleva (2017); Cerreia-Vioglio et al. (2019).
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Uniqueness of preference

The first observation is uniqueness of preferences. In AAT, preference is unique for

ever-chosen alternatives X̂. On the contrary, analyzing past and future choices in

isolation often results in a dilemma trying to conclude whether choices are due to

genuine preferences or due to the lack of attention.

Proposition 1. If c admits AAT representations (u1,Γ1) , (u2,Γ2) and x, y ∈ X̂, then
u1 (x) > u1 (y) if and only if u2 (x) > u2 (y).

Convergence

To delve deeper, I address the question of how to identify preferences, beginning

with an intuitive and useful testable prediction.

Consider the following test that compels the correction of “mistakes” and re-

veals preference. Suppose a DM is predisposed to commit a WARP violation by

choosing x from {x, y} but y from {x, y, z}. They correspond to the top two circles

in Figure 3.1, implying that x receives consideration in {x, y} and y receives consid-

eration in {x, y, z}, which is not enough to determine whether x or y is preferred.

However, if a second choice is elicited using alternating choice sets, then both x and

y will receive consideration, one due to default attention inferred from first period

behavior and another due to a recent experience. The second period choice thus

reveals preference.

Moreover, since they maximize the same preference, second period’s choices

must coincide, either converging on x or converging on y. This convergence prop-

erty is generalized to arbitrary choice sets and history in Proposition 2; it is an

important testable prediction of AAT and the key indicator that the DM has a sta-

ble preference despite the influence of limited consideration. Online Appendix B

Example 12 extends this test to a population of DMs with unknown preference pa-

rameters.

Proposition 2. Suppose c admits an AAT representation, c̃ (h) (A) = x, c̃ (h) (B) = y,
{x, y} ⊆ A ∩ B, and x ̸= y. Either c̃ ((h,A)) (B) = c̃ ((h,B)) (A) = x, which implies
u (x) > u (y), or c̃ ((h,A)) (B) = c̃ ((h,B)) (A) = y, which implies u (y) > u (x).17

17Notation (h,A) refers to the history that begins with history h and followed by choice set A.
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Figure 3.1: Big circles represent choice sets, small circles represent (inferred) con-
sideration.

Convergence rules out other choice patterns that hold different interpreta-

tions, namely sticky choice (i.e., c̃ ({x, y}) ({x, y, z}) = x, c̃ ({x, y, z}) ({x, y}) =

y), which may be explained by habit formation, and past independence (i.e.,

c̃ ({x, y}) ({x, y, z}) = y, c̃ ({x, y, z}) ({x, y}) = x), where it is as if the DM com-

pletely neglects past experiences.

Switches

However, we do not always have the liberty of designing clever tests. How can we

infer preferences in general? Consider a formal definition of the event that allows

us to reveal preference—switches. Note that they need not be WARP violations.

Definition 2. Given c and suppose x ̸= y.

1. Let xS(An)y if c ((An))i = y and c ((An))j = x with y ∈ Aj for some i < j.

2. Let xSy if xS(An)y for some (An) ∈ AN.

Next, Proposition 3 makes a number of observations about switches. The first is

already discussed: if we see a switch from choosing y to choosing x over y, then x

is preferred. Moreover, this kind of evidence can always be found as long as both

x and y are ever chosen. Also, because preference is unique, evidence can never

be contradictory: if it is possible to reveal that x is preferred to y in one sequence,
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it is impossible to reveal the opposite in any sequence. Finally, if there are only

finitely many alternatives, it is possible to collect all of these evidences using just

one sequence of choice sets by asking the right questions in the right order.18

Proposition 3. Suppose c admits an AAT representation (u,Γ).

1. If xSy, then u(x) > u (y).

2. The relation S on X̂ is a strict total order.19

3. If X is finite, then there exists (An) such that S(An) on X̂ is a strict total order.

Identification of Attention

It remains to address whether attention function Γ is also unique, and the answer

is negative.

For the behavior that results from full attention, it makes no difference whether

the DM has considered the alternatives that she did not chose; they are inferior any-

way. But the same intuition applies more generally, since we can always alter Γ by

adding or removing inferior alternatives without changing the model’s prediction.

Therefore, the set of possible model specifications is characterized by a maximal

set: Given c, consider Γ+ : A → 2X\ {∅} where

Γ+ (A) :=
{
x ∈ A : c0 (A)Sx or x = c0 (A) or x /∈ X̂

}
.

Proposition 4. If c admits an AAT representation, then it also admits an AAT rep-
resentation with attention function Γ if and only if c0 (A) ∈ Γ (A) ⊆ Γ+ (A) for all
A.

In practice, this means an analyst in doubt has the freedom to different model

specifications that would not alter predictions, including overestimating the size of

attention function by taking the union of possible candidates of Γ or by taking a

conservative approach using intersections (Online Appendix B Corollary 3).

18It is impossible to construct a c-independent sequence that fully identifies preferences. Online
Appendix B Example 13 provides a counterexample, Corollary 2 outlines the best a c-independent
sequence can do.

19A strict total order is a binary relation that is asymmetric (if xSy, then not ySx), transitive (if
xSy and ySz, then xSz), and connected (if x ̸= y, then xSy or ySx).
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3.3 Counterfactual Violations

Next, I argue that our existing tests for limited attention cannot possibly be com-

plete without taking choice sequences into account. The key idea lies in the distinc-

tion between two kinds of WARP violations that are manifested differently: coun-

terfactual and realized.

For every history h, c̃ (h) : A →X is a one-shot choice function that captures,

at a given point in time, what the DM would choose for each upcoming choice set.

When c̃ (h) violates WARP, for instance

c̃ (h) ({x, y}) = x & c̃ (h) ({x, y, z}) = y,

it is a counterfactual violation. This is typically observed in a between-subject de-

sign where each DM is randomly assigned to one of two choice sets and aggregate

behavior suggests someone is “non-standard”. It differs from WARP violations that

have realized as we observe the same DM over time, obscured in studies that focus

on one-shot decisions, for instance

c̃ (∅) ({x, y}) = x & c̃ (({x, y})) ({x, y, z}) = y.

Consider Figure 2.1 and suppose x, y ∈ A ∩ C. Suppose in the largest rectangle

x is chosen from A and y is chosen from C, then this is a counterfactual WARP

violation at history h. In contrast, if along the solid path x is chosen from A and y

is chosen from C, then this is a realized WARP violation.

Perhaps unexpected at first, it can be shown that even though full attention rules

out counterfactual WARP violations, the absence of counterfactual WARP violations

does not rule out limited attention.

To see this, Example 1 asserts that full attention rules out counterfactual WARP

violations. However, Example 2 shows that a DM who satisfies WARP initially may

violate WARP in the future, so the conventional setting that only considers one-shot

decisions can fall short of detecting all instances of limited attention. Curious at

first, it also highlights that WARP compliance can worsen with increased experience,

even though decisions have definitely improved. Perhaps surprisingly, a DM who

never commits counterfactual WARP violations can be (non-trivially) affected by

limited attention, illustrated in Example 3.
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Example 1. Consider an AAT representation where Γ (A) = A for all A, so

Γ̃ (h) (A) = A for all h, which means the DM considers everything all the time and

therefore by utility maximization, she never commits counterfactual WARP viola-

tions.

Example 2. Consider X = {x, y, z, z′} and Γ (A) = {z} if z ∈ A, Γ (A) = {x} if z /∈ A

and x ∈ A, Γ ({y, z′}) = {y}, and u (x) > u (y) > u (z) > u (z′). Notice that c0 can

be explained by the maximization of preference ranking z ≻0 x ≻0 y ≻0 z
′, thereby

complies with WARP. But with history h = ({y, z′}), choices c̃ (h) ({x, y, z, z′}) = y

and c̃ (h) ({x, y}) = x form a counterfactual WARP violation.

Example 3. Consider X = {x, y, z} and Γ (A) = {x} if x ∈ A, Γ ({y, z}) = {y},

and u (z) > u (y) > u (x). Notice that c0 ({x, y}) = x but c̃ ({y, z}) ({x, y}) = y,

i.e., the choice from {x, y} varies with history, so the DM is inconsistent with full

attention. However, c0 can be explained by the maximization of preference ranking

x ≻0 y ≻0 z, and it can be shown that the DM never commits counterfactual WARP

violations.20

Online Appendix B Corollary 4 shows that a counterfactual WARP violation is

present if and only if there is a sufficiently large difference between initial behavior

and true preference.

3.4 Necessary Departures

If even the lack of counterfactual violations cannot rule out full attention, can any-

thing rule out full attention? It turns out that the necessary traces of limited atten-

tion lie in realized violations and history-dependent choices.

Recall that AAT admits the special case where choice behavior is consistent with

full attention, i.e., Γ (A) = A for all A. In this case, every decision appears to be in-

dependent of history, and no WARP violations will be detected, be it counterfactual

20A WARP violation requires a better alternative to receive attention in some but not all choice sets,
which is impossible when only the worst alternative of each choice set receives attention initially.
Formally, a WARP violation at c̃ (h) requires a, b ∈ X and A,B ∈ A such that {a, b} ⊆ A ∩ B,
u (a) > u (b), a ∈ Γ̃ (h) (A) and a /∈ Γ̃ (h) (B). But this is not possible. If a ∈ Γ (A), then it is
not possible that b ∈ A since only the worst outcome is considered by default. If a /∈ Γ (A), then
a ∈ Γ̃ (h) (A) implies a ∈ c (h), which means a ∈ Γ̃ (h) (B), a contradiction.
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or realized. To see this, notice that for all h and A,

c̃ (h) (A) = argmax
x∈Γ(A)∪(c(h)∩A)

u (x) = argmax
x∈A∪(c(h)∩A)

u (x) = argmax
x∈A

u (x) .

Of course, just because behavior can be represented this way does not mean the

DM actually has full attention; perhaps she got lucky by only paying attention to the

best things. Aware of this distinction, we avoid calling this behavior full attention

and instead say that it admits a standard utility representation.
It turns out that in AAT, behavior must admit a standard utility representation

unless it involves both realized WARP violations and history dependence, making

them the quintessential markings of limited consideration.

In order to make this argument formal, consider two new definitions that result

from strengthening Axiom 1 and Axiom 2.

Definition 3.

1. Full Stability: for every (An) ∈ AN, if c ((An))i = x, {x, y} ⊆ (An)i∩ (An)j, and

x ̸= y, then c ((An))j ̸= y.

2. Past Independence: for every (A1, ..., AK) ∈ A<N and B ∈ A, c̃ ((A1, ..., AK)) (B) =

c̃ ((A1, ..., AK−1)) (B).

Full Stability captures WARP within sequence. Past Independence captures

choices that do vary with past experiences. The former strengthens Axiom 1 and

the latter strengthens Axiom 2.

Theorem 2. Suppose c admits an AAT representation. The following are equivalent:

1. c satisfies Full Stability

2. c satisfies Past Independence

3. c admits a standard utility representation

Theorem 2 summarizes the observations we discussed with one additional find-

ing: Full Stability and Past Independence are linked under AAT, even though they

are in general non-nested and could be interpreted as different aspects of “rational”

behaviors. In particular, Past Independence has remarkable implications: it unites

one-shot choices and choice sequences; if we return to Figure 2.1, it means the same
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alternative has to be chosen from A no matter when and where A appears. If we

believe in Past Independence, then choice sequences are redundant. But bounded

rationality often includes the prospect of correcting “mistakes”, so Past Indepen-

dence will likely fail and choice sequences become important.

Combining Theorem 2 and the examples in Subsection 3.3 makes the case for

studying choice sequences: The lack of counterfactual violations neither rules out

limited attention nor rules out realized violations, but the lack of realized violations

implies consistency with standard utility representation (Theorem 2) and therefore

rules out counterfactual violations.

4 Attention Structures

AAT puts no restriction on attention structures, i.e., Γ can be anything, but an ex-

tensive literature suggests that certain attention structures make more sense than

others. For instance, Masatlioglu et al. (2012)’s choice with limited attention (CLA)

proposes that dropping an alternative that does not receive consideration should

not alter the consideration set, and hence a particular structure is required on Γ.

Manzini and Mariotti (2007)’s rational shortlist method (RSM) involves a criterion

that removes alternatives from final consideration and the universal application of

the same criterion imposes structure on Γ.

It is easy to just plug in these structures into Γ, but an immediate concern arises:

Will the accumulation of experiences, which can alter consideration sets, cause a

DM to depart from a particular attention structure? Surprisingly, the answer is

probably not.

Subsection 4.1 considers a “vertical merger” between AAT and CLA, Subsec-

tion 4.2 does the same for RSM, and Subsection 4.3 does the same for Manzini

and Mariotti (2012)’s categorize-then-choose (CTC). These models turn out to be

highly compatible with AAT; they introduce structures on attention across choice
sets, whereas AAT introduces structure on attention across time. Their complemen-

tarity provides a robust framework and proposes new ways to verify inattention.

Subsection 4.4 concludes with a complete characterization of compatible models.
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4.1 Attention Filter

Due to Masatlioglu et al. (2012):

Definition 4. A mapping Γ̂ : A → A is an attention filter if Γ̂ (A) ⊆ A and y /∈ Γ̂ (A)

implies Γ̂ (A\ {y}) = Γ̂ (A)

Definition 5. A choice function ĉ : A → X is a choice with limited attention (CLA)

if there exist û : X → R and an attention filter Γ̂ : A → A such that

ĉ (A) = argmax
x∈Γ̄(x)

û (x) .

It turns out that in AAT, a DM who has an attention filter will always have

an (possibly different) attention filter, even though her consideration sets have

changed as she accumulates experiences. Proposition 5 formalizes this statement

and Example 4 illustrates.

Proposition 5. If c admits an AAT representation (u,Γ) where Γ is an attention filter,
then for any history h ∈ A<N,

1. Γ̃ (h) : A → A is an attention filter,

2. c̃ (h) : A → X is a CLA.

Example 4 (Secret Menu). A fast food chain offers four items, cheeseburger a, ham-

burger b, Flying Dutchman d, and Animal Fries e. A customer is initially unaware of

the latter two. If both a and b are unavailable, the chain will recommend e, bringing

it to the consumer’s attention. And if e is also unavailable, then the store recom-

mends d. The attention function is therefore Γ (A) = {a, b} ∩ A if {a, b} ∩ A ̸= ∅,

Γ ({d, e}) = Γ ({e}) = {e}, and Γ ({d}) = {d}, which satisfies the property of an at-

tention filter. Suppose u (d) > u (e) > u (b) > u (a). Consider the history h = ({d, e})
from which e is considered and chosen, the consumer has since discovered e and

includes it in her future consideration sets, i.e., Γ̃ (h) (A) = Γ (A) ∪ {e} if e ∈ A and

Γ̃ (h) (A) = Γ (A) otherwise. Although Γ̃ (h) differs from Γ, it is still an attention

filter because dropping d from a choice set does not change the consideration set.

One way to characterize these behaviors is to impose CLA’s original axioms on

c0; they amount to putting (testable) restrictions on counterfactual choices.21 One
21Masatlioglu et al. (2012) proposes an axiom called WARP with Limited Attention.
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might wonder if it is possible to, instead, impose restrictions on choices across time,

and the answer is positive. Axiom 4 introduces the behavioral manifestation of CLA

in choice sequences. It posits that if dropping y results in x no longer chosen—for

which CLA would infer x is preferred to y—then the DM should never switch from

choosing x to choosing y over x.

Axiom 4. If c0 (T ) = x and c0 (T\ {y}) ̸= x, then not ySx.

Proposition 6. c satisfies Axioms 1, 2, 3 and 4 if and only if it admits an Attention
Across Time (AAT) representation (u,Γ) where Γ is an attention filter.

This robust framework strengthens our identification of parameters. Results

from Section 3 carry over, so preferences are pinned down even though CLA by

itself is insufficient. And in the instances where CLA infers x is preferred to y, then

the “direct evidence” where the DM switches from choosing y to choosing x over

y can be found in choice sequences.22 On the other hand, CLA narrows down the

permissible set of attention functions to those that are supported by the theory of

attention filters, mitigating the issue of multiplicity and providing important inter-

pretations.

4.2 Shortlisting

Due to Manzini and Mariotti (2007):

Definition 6. A choice function ĉ : A → X is a rational shortlist methods (RSM) if

there exist asymmetric binary relations P1 and P2 on X such that

ĉ (A) = max (max (A,P1) , P2) .

Here, max (A, S) := {x ∈ A| not ySx ∀y ∈ A}. The model describes a choice

procedure that involves sequentially making a choice, where the DM first creates a

shortlist using a rationale, P1, and then makes a final decision using P2. The shortlist

can therefore be viewed as a consideration set with certain features, defined in

Definition 7. Like the case for an attention filter, Proposition 7 suggests that a DM

22If c0 (T ) = x, c0 (T\ {y}) ̸= x, and y ∈ X̂, then not ySx, so xSy due to Proposition 3 (2). The
reverse is not always true: if the DM has u (x) > u (y), always considers everything, and y is not the
worst alternative, then xSy but choices never violate counterfactual WARP.
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who uses a shortlist will always use a shortlist, even if accumulating experience has

changed the DM’s behavior.

Definition 7. A mapping Γ̂ : A → A is a shortlist if there exists an asymmetric

binary relation S on X such that Γ̂ (A) = max (A, S) for all A.

Proposition 7. If c admits an AAT representation (u,Γ) such that Γ is a shortlist, then
for any history h ∈ A<N,

1. Γ̃ (h) : A → A is a shortlist,

2. c̃ (h) : A → X is an RSM.

The merger between RSM and AAT captures an intuitive process: The DM short-

lists alternatives before making final decisions but revises her rationales as she ac-

cumulates experience. Specifically, when a DM gains experience with an alterna-

tive, the original rationale P1 is revised so that nothing eliminates said alternative,

thereby guaranteeing its consideration in the future and resulting in better deci-

sions. Example 5 illustrates.

Example 5 (Shortlisting Suppliers). A firm can choose from a set of suppliers, but

a Malaysian supplier a and a Thailand supplier b are removed from consideration

when a China supplier d is available. So Γ is a shortlist derived from the rationale

bP1a and bP1d. Suppose u (a) > u (b) > u (d). During COVID-19 lockdowns, d is

temporarily unavailable, resulting in the choice set {a, b} from which a is chosen.

After this experience (h = ({a, d})), the firm cancels bP1a but maintains bP1d; so

Γ̃ (h) is still a shortlist even though Γ̃ (h) ̸= Γ.

As a consequence, the DM’s decisions not only become increasingly informative

of her true preferences but also explain whether her past choices were in fact influ-

enced by shortlisting. To see this, consider a sequence of observations where x was

initially chosen over y, but after y became chosen in an incidental choice problem,

future comparisons resolve in favor of y. This confirms that the initial choice of

x was driven by a rationale that eliminated y instead of the reflection of genuine

preference.
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4.3 Dominated Categories

Related to the intuition of shortlisting is when an entire category of options is

removed from consideration when another category (not necessarily better) is

present. Due to Manzini and Mariotti (2012):

Definition 8. A choice function ĉ : A → X is a categorize-then-choose (CTC) if there

exist asymmetric binary relations ≻s on 2X\ {∅} and ≻∗ on X such that ĉ (A) =

max (maxs (A,≻s) ,≻∗) .

Here, maxs (A,≻s) := {x ∈ A|∄R′, R′′ ⊆ A : R′′ ≻s R′ and x ∈ R′} and max (A,≻∗)

is defined in Subsection 4.2. The model describes a choice procedure where alter-

natives belonging to dominated categories are eliminated using a shading relation

≻s before final decision is made using ≻∗. The authors describe the first stage as

coarse maximization, using categories. Definition 9 provides a formal definition.

Definition 9. A mapping Γ̂ : A → A is a coarse-max if there exists an asymmetric

binary relation S on 2X\ {∅} such that Γ̂ (A) = maxs (A, S) for all A.

Similar to before, Proposition 8 suggests that a DM who coarse-max will con-

tinue to coarse-max even with accumulating experience. However, future coarse-

max becomes “finer” as they involve smaller (dominated) categories, resulting in

larger consideration sets and better decisions due to increased experience. Exam-

ple 6 illustrates the idea.

Proposition 8. If c admits an AAT representation (u,Γ) such that Γ is a coarse-max,
then for any history h ∈ A<N,

1. Γ̃ (h) : A → A is a coarse-max,

2. c̃ (h) : A → X is a CTC.

Example 6 (Favorite Restaurants). Consider the example from Manzini and Mari-

otti (2012) where the availability of {Italian restaurants} shades {Mexican restau-

rants}, excluding the latter category from final decisions. Imagine a history in which

a sole Mexican restaurant was open during Ferragosto, visited by the consumer,

and was subsequently re-categorized as a special Mexican restaurant (perhaps a

favorite) exempted from shading. The other Mexican restaurants continue to be

shaded by Italian restaurants. In the future, the consumer’s genuine preference will

determine whether they return to this Mexican restaurant.
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4.4 Characterizing Compatibility

CLA, RSM, and CTC are different models that capture different behavior, but their

compatibility with AAT contributes to a robust framework where AAT identifies pref-
erences and these models provide insights to the intrinsic formation of (in)attention.

Can other models be compatible? I now characterize a sufficient and necessary

property.

Let X be a countable set of alternatives and let A be the set of all subsets of

X. Let CAll be the collection of all (one-shot) choice functions ĉ : A → X such

that ĉ (A) ∈ A for all A ∈ A. A subset C ⊆ CAll, which may include some choice

functions and exclude others, can be viewed as the universe of behaviors explained

by a given choice model, or equivalently, those that satisfy some given axioms.

Let CWARP characterize the set of all choice functions that satisfy WARP (i.e., ĉ ∈
CWARP if and only if ĉ (T ) = ĉ (S) whenever ĉ (S) ∈ T ⊆ S). By convention,

f (A) := {f (A) : A ∈ A}.

Definition 10. C is compatible with AAT if for every f ∈ C, there exists an AAT

representation such that c0 = f and c̃ (h) ∈ C for all h ∈ A<N.

Definition 10 captures compatibility in the following sense. Suppose we observe

a DM who suffers from limited attention and whose “non-standard” behavior f be-

longs to a choice model C. If f is a particularly interesting or important behavior,

then the ability for C to explain f is good news for C. However, if the DM is also

AAT, then her behavior tomorrow, f ′, could differ from f , perhaps because her ex-

perience today causes her to expand her awareness or consideration of alternatives.

The question that compatibility asks is whether f ′ still belongs to C, and whether

this continues to hold when we observe f ′′, f ′′′, f ′′′′, ... subsequently. If not, then

C and AAT are not compatible. Note that for f ′ to belong to C, there is a certain

“advantage” for C to be large and include many choice functions; but that comes at

a cost. An overly large C may include a certain odd behavior g where g or one of

g′, g′′, g′′′... fails to belong to C, resulting again in incompatibility.

Compatibility is therefore non-trivial.23 CLA, RSM, and CTC are compatible with

AAT due to a common feature called WARP-convex.

Definition 11. Let f, g, κ ∈ CAll.
23Online Appendix B Example 14 provides a C that is not compatible with AAT.
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1. g is a κ-cousin of f if for some finite T ⊆ f (A), g (A) = κ ({f (A)} ∪ [A ∩ T ]).

2. C is WARP-convex if for all f ∈ C, there exists κ ∈ CWARP such that every

κ-cousin of f is in C.

Intuitively, a model (or a set of axioms) is WARP-convex if, whenever a WARP-

violating choice function is predicted by the model, choice functions that can be

derived by reconciling some violations with a WARP-complying choice function can

also be explained by the model. It captures a model’s tolerance to the correction of

“mistakes”.

A C that only contains WARP-conforming choice functions (even if C ̸= CWARP )

is trivially WARP-convex, including expected utility, exponential discounting, and

generalizations that preserve WARP. The notion is meaningful when we consider

non-WARP models. It turns out that despite its non-triviality, all of the limited

consideration models I looked at are WARP-convex, including RSM (Manzini and

Mariotti, 2007), CLA (Masatlioglu et al., 2012), CTC (Manzini and Mariotti, 2012),

rationalization (Cherepanov et al., 2013), and overwhelming choice (Lleras et al.,

2017).

Theorem 3. C is WARP-convex if and only if it is compatible with AAT.

Theorem 3 has two components. First, it suggests that a (one-shot) choice model

is compatible with AAT only if its WARP violations are correctable. This direction is

intuitive; since AAT compels the correction of WARP violations in future choices, a

compatible choice model must tolerate a DM who is in the process of these correc-

tions.

Perhaps unexpected at first, the opposite is also true. A choice model is compat-

ible with AAT as long as WARP violations are correctable, which highlights the fact

that AAT does nothing more than correcting WARP violations in a specific way. If

no WARP violation is present, then AAT would accommodate a choice behavior as

is; but if violations are present, then AAT would religiously correct them without

introducing new or different types of WARP violations.24

24When a model is compatible, it does not mean Γ̃ (h) will, unlike CLA, RSM, and CTC, satisfy
the structures imposed by these models. To see this, Geng (2022)’s limited consideration model with
capacity-k puts a cap on the size of consideration sets. So Γ̃ (h) (A) will certainly exceed this capacity
when A is large and h is long. Curiously, their model is compatible with AAT, essentially because we
can always find Γ̂ (h) ̸= Γ̃ (h), by removing inferior alternatives from consideration, such that Γ̂ (h)
predicts the same choices while staying within capacity. The same observation applies to Geng and
Özbay (2021)’s shortlisting with capacity-k.
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5 Attention under Frames

The analysis readily presents an extended framework that incorporates frames. It

allows us to study how frames affect attention (now and in the future) and, more

fundamentally, whether frames work.25 A representation for generic frames is in-

troduced, and later specialized to the cases where frames are lists (the DM searches

from top to bottom but may stop at any point) and recommendations (the DM con-

siders recommended alternatives and possibly more).

5.1 Generic Frames

I assume that Ā is a collection of choice problems with the typical element

Ā = (A,F ) ∈ Ā. The primitive is a function that assigns to each infinite se-

quence of choice problems (choice sets with frames) an infinite sequence of choices,

c : ĀN → XN, and other assumptions are analogous to Section 2.26 For now, a frame

is “generic” in the sense that it can represent any observable difference in the pre-

sentation of alternatives. Choices are therefore captured by a collection of history

dependent one-shot choice functions,

c̃ (h) : Ā → X,

where h ∈ Ā<N is a finite sequence of choice sets each presented under some frame.

Importantly, the DM can make different choices for the same choice set A when it

appears under different frames, i.e., c̃ (h) (A,F ) ̸= c̃ (h) (A,F ′).

It turns out that the original set of axioms in Section 2, after cosmetic modifica-

tions, suffices for an AAT representation with frames.27

25There is a general interest in identifying the effects of frames, see for example Goldin and Reck
(2020).

26Formally, let X be a countable set of alternatives and let A be the set of all finite subsets of X
with at least two elements. Let Ā be a collection of choice problems that satisfies

{
A : (A,F ) ∈ Ā

}
=

A, that is, every choice set appears at least once, even if not every frame appears in the dataset. I
abuse notation by writing “x ∈ Ā” when I mean x ∈ A where Ā = (A,F ). The primitive c :
ĀN → XN satisfies c

((
Ān

))
k
∈
(
Ān

)
k

for each
(
Ān

)
∈ ĀN and k ∈ N. I continue to assume future

independence. One-shot choice functions c̃, choice without history c0, and the revealed preference
relation P are defined in the same way as in Section 2. I use Āk for

(
Ān

)
k

and use f (A,F ) for
f ((A,F )) where f can be c0, c̃ (h), Γ, or Γ̃ (h).
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Axiom 5. For any
(
Ān

)
∈ ĀN and h < i < j, if c

((
Ān

))
h
= x, c

((
Ān

))
i
= y ̸= x, x ∈ Āi, and
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Definition 12. c admits an Attention Across Time with Frames (AAT-F) repre-

sentation if there exist a utility function u : X → R and an attention function
Γ : Ā → 2X\ {∅}, where Γ (A,F ) ⊆ A, such that

c̃ (h) (A,F ) = argmax
x∈Γ̃(h)(A,F )

u (x)

where Γ̃ (h) (A,F ) = Γ (A,F ) ∪ (c (h) ∩ A).

Theorem 4. c satisfies Axioms 5, 6, and 7 if and only if it admits an Attention Across
Time with Frames (AATF) representation.

As before, the DM pays attention to a (weak) subset of alternatives Γ (A,F )⊆ A

and considers historically chosen alternatives c (h) if they are available. But unlike

before, different frames can induce different consideration sets for same choice set

A, i.e., Γ (A,F ′) ̸= Γ (A,F ′′), thereby resulting in different choices. Because these

choices will remain in lasting consideration, frames have short-term and long-term

effects.

5.2 Effective Frames

A number of basic observations capture the effect of framing in this framework.

First, Example 7 suggests that a frame can successfully draw the DM’s attention

to a target alternative now and in the future.

Example 7. Suppose the history is h and a certain frame F is introduced for choice

set A, with the intention of alerting the DM to a target alternative x. If the DM ends

up choosing x, i.e., c̃ (h) (A,F ) = x, then the frame is successful and the DM will

always consider x in the future, i.e., x ∈ Γ̃ (h′) (A′, F ′) if x ∈ A′, where h′ is any

history that begins with h and (A,F ).

However, Example 8 suggests that repeating an unsuccessful frame will neither

alter behavior now nor affect attention in the future.

y ∈ Āj , then c
((
Ān

))
j
̸= x.

Axiom 6. For any B̄ ∈ Ā, c̃
((
Ā1, ..., ĀK

)) (
B̄
)
∈
{
c̃
((
Ā1, ..., ĀK−1

)) (
B̄
)
, c̃

((
Ā1, ..., ĀK−1

)) (
ĀK

)}
.

Axiom 7. If c0
(
Ā
)
Py, then y /∈ c̃ (h)

(
Ā
)

for all h ∈ Ā.
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Example 8. In Example 7, if the frame was not successful, i.e., c̃ (h) (A,F ) ̸= x,

then repeating the same frame will be futile. To see this, suppose c̃ (h) (A,F ) = y

and let h′ be the history h followed by (A,F ). Since additional consideration is paid

only to the newly chosen alternative y, which was already receiving consideration,

the DM’s consideration set when she encounters (A,F ) for the second time is the

same as the first time, i.e., Γ̃ (h′) (A,F ) = Γ̃ (h) (A,F ), which results in the same

choice c̃ (h′) (A,F ) = y. Since the target alternative x is still not chosen, it will not

be added into future considerations.

These observations capture some intuitive aspects of framing. In particular, if the

target alternative is inferior, then using a frame to elevate it will not produce mean-

ingful results; the DM will simply consider it and choose something else. Because

lasting consideration can only result from the DM choosing the target alternative at

least once, the model suggests that effective framing still depends substantially on

the relative quality of the target alternative in the choice set (or the consideration

set). For example, if a frame can cause more appealing alternatives to not receive

consideration, then it may help the target alternative to be chosen now and remain

in consideration in the future.

Can we help a DM by alerting them to superior alternatives? The model cautions

this endeavor. Section 3 highlights that the quality of future decisions depends on

the complementary between past experiences and future problems. For instance,

alerting the DM to a better alternative tends to be effective (since it is better, the DM

will choose it) and improves current utility; but if this alternative is unavailable in

future, then the intervention could lead to negative long-term consequences where

an always-available option never receives consideration, as in Example 9.

Example 9 (Hidden Talent). A stand-up comedy show needs an emergency substi-

tute, and only fringe performers a (very talented, an economist) and b (talented, a

full-time performer) are available for last-minute arrangements. The show is only

aware of b and would have chosen her, but a friend brings a to the show’s consider-

ation resulting in the hiring of a. However, a later returns to her full-time job and

is no longer available in the future. Facing the normal selection of performers, the

show does not consider b, even though b is better than most of the chosen perform-

ers. The show’s overall utility could be better had it chosen b earlier and kept her

in lasting consideration.
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5.3 Ordered Lists

Suppose each frame is an ordered list, that is, for each Ā = (A,F ) ∈ Ā, F is

a complete, transitive, and antisymmetric binary relation (a linear order) on A,

where yFx (y ̸= x) is interpreted as “y is listed above x”.

Do DMs search from the top just because alternatives are ordered this way?

Consider Axiom 8, which says that if x is chosen from Ā = (A,F ) when there

is no (observable) history, in which it is listed below y (according to F ), then a

switch from x to y cannot occur, i.e., not ySx.28 Intuitively, the consideration of x

should have implied the consideration of y, assuming that the ordered list works,

and choosing x means x is better than y; therefore the DM has no reason to switch

from choosing x to choosing y over x.

Axiom 8. If yFc0
(
Ā
)

for some Ā = (A,F ), then not ySc0
(
Ā
)
.

It turns out that this postulate fully characterizes the expected behavior for a top

to bottom search.

Proposition 9. c satisfies Axioms 5, 6, 7 and 8 if and only if it admits an AATF
representation where x ∈ Γ (A,F ) and yFx implies y ∈Γ (A,F ).

Example 10 (Baby Diapers). An academic goes online to purchase baby diapers

for a newborn. The search result presents 100 brands in a list and the academic

searches from top to bottom but does not consider everything, stopping at a certain

point (say, 15 brands). It is not clear if the academic ultimately purchases the most

preferred diaper, but if item number 13, brand x, is purchased, then it is preferred

over the previous 12 items. Moreover, when the academic returns to top up on

diapers, brand x may be listed beyond the point the academic searches, but already

aware of this brand the academic considers it anyway.

5.4 Recommendations

Consider one last application where a frame is a set of recommended options. For

each Ā = (A,F ) ∈ Ā, F (A) ⊆ A is a set of alternatives that are highlighted or

28Similar to Section 3, we say ySx if there exists
(
Ān

)
∈ ĀN such that c

((
Ān

))
i
= x and

c
((
Ān

))
j
= y ̸= x with x ∈ Āj for some i < j.
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made salient to the DM. For each choice set A, different recommendations F, F ′ can

be made, and they potentially result in different decisions.

Whether or not recommendations work, and whether they work as intended, is

neither assumed nor observed; we infer using choice sequences. Axiom 9 says that

if y is a recommended option in choice problem Ā, but the DM chooses x, then a

switch from x to y cannot occur.

Axiom 9. If y ∈ F (A) for some Ā = (A,F ), then not ySc0
(
Ā
)
.

Proposition 10. c satisfies Axioms 5, 6, 7 and 9 if and only if it admits an AATF
representation where x ∈ F (A) implies x ∈ Γ (A,F ).

Although consideration sets cannot be directly observed, Axiom 9 provides a

test for whether recommendations work. If the axiom fails, that means there is a

choice problem Ā from which the decision maker fails to consider a recommended

option. On the contrary, if the axiom is satisfied, then behavior is consistent with

consideration sets that include all recommended options.

Example 11 (Unsought Advice). Out of two libraries on campus, Lehman a and

Butler b, a professor recommends a to a PhD student, expecting that the student

will at least consider a (the student has a consistent preference and knows which

one is better as long as it is considered). Surprisingly, the student chooses b, leading

the professor to conclude that the student prefers b over a. A couple of months later,

the student stops going to b and switches to a, indicating to the professor that their

initial recommendation was, in fact, disregarded.

6 Conclusion

This paper introduces a framework that studies how past experiences can lead to

the consideration of previously chosen alternatives in future decisions. The intu-

ition is captured by a model called Attention Across Time (AAT), which allows an

analyst to fully pin down preferences even if attention is not directly observed,

paving the way to sharper welfare analysis in the presence of limited attention. A

wide range of implications is drawn, including empirical techniques to reveal pref-

erences, the separation of counterfactual and realized violations, more robust tests

of limited consideration, compatibility with different attention structures, and an
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extension for studying the short- and long-term effects of frames. The findings cen-

ter around one key message: that the wealth of information in choice sequences

contributes meaningfully to the examination of boundedly rational behavior, where

limited consideration is one of many possible examples. Should choice sequences

receive lasting consideration?
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A Appendix: Proofs

Simplifying notations: (i) A: a choice set. (ii) A: a sequence of choice sets (of

any length). (iii) [A]lt=k: the subsequence of A including only elements in positions

k through l. (iv) A ∈ A: a choice set A that is in the sequence of choice sets

A. (v) ABC: the sequence of choice sets that starts with choice set A, followed by

choice set B, and ends with choice set C. (vi) x: an alternative. (vii) Ax: alternative

x is chosen from the choice set A, which is the only choice set in the sequence.

(viii) A∋yx: alternative x is chosen from the choice set A, which is the only choice

set in the sequence, and alternative y is in A. (ix) AxByC∋xz: the sequence of

choice sets ABC from which x, y, z are chosen respectively, and alternative x is

also in C. (x) ABy: a sequence of choice sets A, followed by the choice set B from

which alternative y is chosen. (xi) AxzBy: a sequence of choice sets A, from which

alternative x is chosen from some choice set A ∈ A and alternative z is chosen from

some choice set C ∈ A (in no particular order), followed by choice set B from

which alternative y is chosen.

Implications of axioms: Axiom 1, Axiom 2, and Axiom 3 imply the following

conditions. Online Appendix B Subsection B.1.1 provides detailed proofs. Once

Theorem 1 is proven, these are also implied by an AAT representation.

Condition A.1. If ABx, either Bx or Ax.

Condition A.2. If Ax, then Bx for some B.

Condition A.3. If AxBx and x ̸= y, then not ByAy.

Condition A.4. If Ax and BAy where x ̸= y, then AxCyAy for some C.

Condition A.5. If Ax and By where x ̸= y, then either CyE∋yx or DxF∋xy.

Condition A.6. Suppose x ̸= y. (1) If AyB∋yx, then not CxD∋xy. (2) If AxyBx,

then not CxyBy. (3) If AxyB∋yx, then not AxyD∋xy.

Condition A.7. If xPy, then not yPx.

Condition A.8. If c (A) = c (B), then c̃ (A) (D) = c̃ (B) (D) for all D.
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A.1 Proof of Theorem 1

Fix c. As is common, necessity of axioms (if) is straightforward, so I will fo-

cus on showing sufficiency of axioms (only if). The plan goes as follows. We

start by constructing ≻ in stage 1, the true underlying preference that the an-

ticipated utility function represents. Stage 2 shows that the constructed ≻ has

the desirable properties to be represented by a utility function. In stage 3, we

construct Γ and show that (≻,Γ) explains choices. Note that by Condition A.2,

X̂ = {x ∈ X : x = c̃ (∅) (A)∃A ∈ A}. Moreover, |X\X̂| ≤ 1 because if z ∈ X\X̂,

then {z, x}x for all x ̸= z, which means x ∈ X̂ for all x ̸= z.

Stage 1, construction of ≻ Consider any pair x, y ∈ X such that x ̸= y. If x ∈ X̂

and y ∈ X\X̂, set x ≻P y. If x, y ∈ X̂, suppose WLOG that {x, y}x.

1. If there exists A such that Ay {x, y}x, we set x ≻S y.

2. If there exists A such that Ay {x, y} y, we set y ≻D x.

Claim. Either x ≻S y or y ≻D x and not both.

Proof. The existence of Ay is guaranteed by y ∈ X̂ and Condition A.2, so either

x ≻S y or y ≻D x. Suppose for contradiction both, so for some A we have Ay {x, y}x
and for some B we have By {x, y} y, but this violates Condition A.8.

Stage 2, properties of ≻ By the claim, ≻S ∪ ≻D, a subset of X̂ × X̂, is connected

and antisymmetric. By construction, ≻P , a subset of X̂ × X\X̂, is connected by

clearly antisymmetric. Hence the relation ≻:=≻S ∪ ≻D ∪ ≻P , a subset of X ×X, is

connected and antisymmetric.

Claim. ≻ is transitive.

Proof. Take any x, y, z ∈ X. If one of x, y, z is in X\X̂ (at most one due to |X\X̂| ≤
1), say WLOG x, y ∈ X̂ and z ∈ X\X̂, then x ≻ z and y ≻ z means no violation of

transitivity is possible. Now suppose x, y, z ∈ X̂. Suppose for contradiction x ≻ y,

y ≻ z, and z ≻ x. Since x, y, z ∈ X̂, each of these ≻’s is either ≻S or ≻D, which

implies xPy, yPz, and zPx (definition of P given in Section 2 prior to Axiom 3).

Suppose WLOG {x, y, z}x. Since y, z ∈ X̂, Condition A.2 guarantees the existence

of Ay and Bz. Either AyBz or BzAy (or both). To see this, suppose not AyBz,
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then by Condition A.1 we have AyBy, but Condition A.3 implies not BzAz, then by

Condition A.1 we have BzAy. Suppose WLOG AyBz, consider AyBz {x, y, z}α. If

α = x, then xPz (due to a switch). If α = y, then yPx (due to the default of x).

If α = z, then zPy (due to a switch). So there is bound to be a contradiction of

Condition A.7.

Stage 3, model explains choice Since ≻ on X is a strict total order and X is

countable, let u : X → R be real-valued function such that u (x) > u (y) if and only if

x ≻ y. Moreover, construct the attention function Γ : A → A by Γ (A) := {c̃ (∅) (A)},

for all A ∈ A. We check that this model specification explains choices. Throughout,

we use cmodel to label the choice function given by the model, and from it c̃model the

one-shot choice functions.

Claim. c̃ (∅) (A) = argmaxx∈Γ̃(∅)(A) u (x).

Proof. Due to Γ (A) = {c̃ (∅) (A)} and Γ̃ (∅) (A) = Γ (A).

We now show that (u,Γ) explains the entire c. Take any sequence of choice sets

(An) ∈ AN, and suppose for contradiction that, for some i,

c ((An))i ̸= argmax
x∈Γ̃((A1,...,Ai−1))(Ai)

u (x) .

Let i be the set of all such i’s; they correspond to the set of all choice sets in (An)

from which the actual choice is not the same as the model prediction. Denote the

minimum element of i by i∗ := min i, which is well-defined. The earlier claim

implies i∗ ̸= 1. Consider i∗ ≥ 2. For notational convenience, denote the choice and

the model prediction by, respectively,

cR := c ((An))i∗ and cP := cmodel ((An))i∗ = argmax
x∈Γ̃((A1,...,Ai∗−1))(Ai∗ )

u (x) .

Claim.
{
cP , cR

}
⊆ Γ̃ ((A1, ..., Ai∗−1)) (Ai∗).

Proof. By definition, cP ∈ Γ̃ ((A1, ..., Ai∗−1)) (Ai∗). Also, Condition A.1 implies

either cR = c̃ (∅) (Ai∗) or cR ∈ c ((A1, ..., Ai∗−1)), and since i∗ is the first in-

stance of disagreement, we have cR ∈ Γ̃ ((A1, ..., Ai∗−1)) (Ai∗). We continue with{
cP , cR

}
⊆ Γ̃ ((A1, ..., Ai∗−1)) (Ai∗).
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Claim. Either cP ≻S cR or cP ≻D cR, which implies cPPcR.

Proof. By definition, cR ∈ X̂. Since cP ∈ Γ̃ ((A1, ..., Ai∗−1)) (Ai∗), and since i∗ is the

first instance of disagreement, either cP ∈ Γ (Ai∗) which by the construction of Γ

implies cP = c̃ (∅) (Ai∗) or cP ∈ c ((A1, ..., Ai∗−1)), each would imply cP ∈ X̂. Since

the model predicts cP to be chosen over cR even though cR was paid attention to,

we have u
(
cP

)
> u

(
cR

)
, which imply cP ≻S cR or cP ≻D cR from the construction

of u. Then cPPcR follows from the definition of P .

Claim. cRPcP .

Proof. Since i∗ is the first instance of disagreement, cP ∈ Γ̃ ((A1, ..., Ai∗−1)) (Ai∗)

implies either cP = c̃ (∅) (Ai∗) or cP ∈ c ((A1, ..., Ai∗−1)). The formal and cR chosen

from Ai∗ implies cRPcP . The latter and cR chosen over cP after cP was previously

chosen implies cRPcP .

But cPPcR and cRPcP contradict Condition A.7. We showed that if model pre-

diction and actual choices mismatch for the first time in a sequence, that necessarily

leads to a contradiction; this means no mismatches can ever happen.

A.2 Proof of Theorem 2

A standard utility representation with parameter u paired with Γ (A) = A for all A

will imply the other two, which is also illustrated in the main text.

Past Independence implies standard utility representation: Applying Past In-

dependence iteratively gives c̃ (h) (A) = c̃ (∅) (A) for all h and A. Suppose c̃ (∅) (A)
and c̃ (∅) (B) violate WARP, then the sequence (A,B,A,B, ...) will violate Axiom 1,

so c̃ (∅) satisfies WARP and it is standard that there exists u : X → R such that

c̃ (∅) (A) = argmaxx∈A u (x). So c̃ (h) (A) = argmaxx∈A u (x) for all h and A.

Full Stability implies Past Independence: Past Independence is equivalent to

c̃ (h) (A) = c̃ (∅) (A) for all h and A (sufficiency of Past Independence uses it-

erative argument, necessity of Path Independence is straightforward). Suppose

Past Independence is not satisfied, so there exists A such that c̃ (∅) (A) = x and

c̃ (h) (A) = y ̸= x. Due to AAT, this means u (y) > u (x) and y ∈ c (h). The latter
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invokes Condition A.2 to guarantee existence of B such that c̃ (∅) (B) = y. Consider

the sequence of choice set (A,B, {x, y} , ...). In AAT, x is chosen from A, y is chosen

from B (because u (y) > u (z) for all z ∈ Γ (B) ∪ {x}), and y is chosen from {x, y}
(because y ∈ Γ̃ ((A,B)) ({x, y}) and u (y) > u (x)). But x chosen over y (from A)

and then y chosen over x (from {x, y}) within a sequence violates Full Stability.

A.3 Proof of Theorem 3

Only if: Take any f ∈ C. Since C is WARP-convex, consider the κ ∈ CWARP such

that every κ-cousin of f is in C. Construct the AAT representation (u,Γ) where u

represents κ in standard utility maximization and Γ (A) = {f (A)}. It is clear that

c0 = f . Now consider any history h ∈ A<N, we show that c̃ (h) ∈ C. Consider any

A ∈ A. By AAT, Γ̃ (h) (A) = Γ (A)∪ [A ∩ c (h)] = {f (A)} ∪ [A ∩ c (h)], so c̃ (h) (A) =

argmaxx∈{f(A)}∪[A∩c(h)] u (x) = κ ({f (A)} ∪ [A ∩ c (h)]), where the second equality

is due to the fact that u represents κ. By setting T = c (h), we conclude that c̃ (h) is

a κ-cousin of f , and therefore c̃ (h) ∈ C.

If: Suppose C is compatible with AAT but not WARP-convex, so for some f ∈ C,

there is no κ ∈ CWARP such that every κ-cousin of f is in C. Consider this f and

suppose the AAT representation (u,Γ) is such that c0 = f and c̃ (h) ∈ C for all

h ∈ A<N. Since u represents some κ ∈ CWARP in standard utility maximization,

consider the κ-cousin of f that is not in C, exists because C is not WARP-convex,

and call it g, which is associated with some finite T ⊆ f (A). Now we construct

a history h ∈ A<N such that c (h) = T . Consider the alternatives x1, ..., xn such

that {x1, ..., xn} = T and u (xi) < u (xi+1) for each i. For each i, since xi ∈ T ⊆
f (A), there exists Ai such that c̃ (∅) (Ai) = xi, which means xi ∈ Γ (Ai) and xi =

argmaxz∈Γ(Ai) u (z). Consider the history h = (A1, ..., An). Note that c̃ (∅) (A1) = x1.

Then, inductively, for each i = 2, ..., n, Γ̃ ((A1, ..., Ai−1)) (Ai) = Γ (Ai) ∪ {x1, ..., xi−1}
and u (xk) < u (xi) for all k < i, so c̃ ((A1, ..., Ai−1)) (Ai) = xi. So c (h) = T , and

therefore c̃ (h) (A) = argmaxz∈Γ(A)∪[A∩c(h)] u (z) = argmaxz∈{f(A)}∪[A∩T ] u (z) = g (A)

for all A ∈ A, so c̃ (h) = g. It is impossible that c̃ (h) ∈ C but g /∈ C.
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A.4 Proof of Theorem 4

The proof is identical to the proof of Theorem 1, with these differences: (1) When-

ever the proof of Theorem 1, including its preceding lemmas and up to stage 3, uses

a choice set A ∈ A, switch it to a choice problem (A,F ) ∈ Ā. If there are multiple

of them, (A,F ) , (A,F ′), it is WLOG to pick one. This is where the assumption that

Ā includes every choice set A ∈ A at least once becomes relevant. Note that the

definition of X̂ now takes into account frames; that is, if there is any choice prob-

lem (A,F ) such that when it appears in any sequences the alternative x is chosen,

then x ∈ X̂. (2) Then at stage 3, where a complete and transitive ≻ on X has

already been established, proceed with building a utility function u : X → R as

usual. Now construct the attention function by Γ (A,F ) := {c̃ (∅) (A,F )}. (3) The

rest of the proof shows that choices coincide with model prediction. When it says,

“for all choice set A ∈ A”, change it to “for all choice problem (A,F ) ∈ Ā”.
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B Online Appendix: Omitted Proofs and Results

Simplifying notations are given in Appendix A.

B.1 Omitted Proofs

B.1.1 Proofs of Conditions

Lemma 1. If c satisfies Axiom 2, then it satisfies Condition A.1.

Proof. Take ABx, and suppose not Bx. Let K be the length of A. By Axiom 2,

either [A]K−1
t=1 [A]Kt=K x or [A]K−1

t=1 Bx (or both). If it is the former, we are done since

Ax. Suppose it is the latter, then by Axiom 2 again we have either [A]K−2
t=1 [A]K−1

t=K−1 x

or [A]K−2
t=K Bx (or both). Again, if it is the former, we are done, otherwise we keep

moving backward until we find q such that 1 ≤ q < K and [A]qt=1 [A]q+1
t=q+1 x. If this

process does not end when q = 1, then [A]1t=1 x by Axiom 2, so Ax.

Lemma 2. If c satisfies Axiom 2, then it satisfies Condition A.2.

Proof. Say Ax, and in particular x is chosen from the K-th element, i.e.,

[A]K−1
t=1 [A]Kt=K x. By Condition A.1, either [A]Kt=K x or [A]K−1

t=1 x. If the former,

let B = [A]Kt=K and we are done. If the latter, by Condition A.1 again, either

[A]K−1
t=K−1 x or [A]K−2

t=1 x. If the former, let B = [A]K−1
t=K−1 and we are done. Otherwise

we keep going backward until we find q such that 1 ≤ q < K and [A]qt=q x. If

this process does not end by q = 2, then it must be that [A]1t=1 x, so Bx where

B = [A]1t=1.

Lemma 3. If c satisfies Axiom 3, then it satisfies Condition A.3.

Proof. Suppose for contradiction AxBx and ByAy. So {x, y} ⊆ A∩B. By definition,

By and AxBx jointly imply xPy. Then Ax, ByAy, and xPy jointly violate Axiom 3.

Lemma 4. If c satisfies Axiom 2 and Axiom 3, then it satisfies Condition A.4

Proof. Suppose Ax and BAy, then yPx by the definition of P . Moreover Condi-

tion A.2 implies Cy for some y. Now consider AxCαAβ. Condition A.1 and Cy

imply α ∈ {x, y}, but α = x, Cy, and yPx jointly contradict Axiom 3, so α = y.

Condition A.1 and Ax imply β ∈ {x, y}. If β = x, then xPy, but Ax, BAy, and xPy

jointly contradict Axiom 3. So AxCyAy.
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Lemma 5. If c satisfies Axiom 2 and Axiom 3, then it satisfies Condition A.5.

Proof. Suppose Ax and By, then by Condition A.2 there exist Ax and By. Suppose

WLOG {x, y}x. Consider ByAα. Condition A.1 implies α ∈ {x, y}. Suppose α = x,

then consider ByAx {x, y} β. No matter β we are done. Suppose α = y, then

Condition A.1 and Condition A.3 imply AxBy. Now consider AxBy {x, y} β. No

matter β we are done.

Lemma 6. If c satisfies Axiom 1 and Axiom 3, then it satisfies Condition A.6.

Proof. (2) and (3) are immediate given (1), which I now show. Suppose for

contradiction AyB∋yx and CxD∋xy, and suppose WLOG {x, y}x. By Axiom 1,

CxD∋xy {x, y} y. But this along with {x, y}x and xPy (by the definition of P due

to AyB∋yx) jointly violate Axiom 3.

Lemma 7. If c satisfies Axiom 1, Axiom 2, and Axiom 3, then it satisfies Condition A.7.

Proof. Suppose xPy and yPx. By the definition of P , either (i) AyB∋yx and

CxD∋xy, (ii) AyB∋yx and [Cx and DCy], or (iii) [Ay and BAx] and [Cx and

DCy] (a fourth case is WLOG the first case and is omitted). Case (i) contradicts

Condition A.6. Due to Condition A.4, (ii) and (iii) also contradict Condition A.6.

Lemma 8. If c satisfies Axiom 1, Axiom 2, and Axiom 3, then it satisfies Condition A.8.

Proof. Suppose Dz. Let c1 = c̃ (A) (D) and c2 = c̃ (B) (D), and suppose for con-

tradiction c1 ̸= c2. Say c1, c2 ∈ c (A), then Condition A.6 (3) is violated. Instead,

suppose WLOG c1 /∈ c (A), so c1 = z by Condition A.1 and c2 ̸= z, which means

c2Pz and, by Condition A.1, c2 ∈ c (A). So Ac2D
∋c2z, which means zPc2. But c2Pz

and zPc2 jointly contradict Condition A.7.

B.1.2 Proof of Proposition 1

Suppose x, y ∈ X̂ and suppose for contradiction c admits AAT representations with

specifications (u1,Γ1) and (u2,Γ2) but u1 (x) > u1 (y) and u2 (x) < u2 (y). Since

x, y ∈ X̂, Condition A.5 guarantees either CyE∋yx, which contradicts u2 (y) >

u2 (x), or DxF∋xy, which contradicts u1 (x) > u1 (y).
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B.1.3 Proof of Proposition 2

Suppose CAx and CBy. Suppose u (x) > u (y). Since Γ̃ (CA) (B) = Γ̃ (C) (B)∪{x}
and u (x) > u (y) > u (z) for all z ∈ Γ̃ (C) (B) \ {x, y}, so c̃ (CA) (B) = x. Since

Γ̃ (CB) (A) = Γ̃ (C) (A) ∪ {y} and u (x) > u (z) for all z ∈ Γ̃ (C) (A) \ {x} and

u (x) > u (y), so c̃ (CB) (A) = x. We showed convergence on x when u (x) > u (y).

If u (y) > u (x) instead, analogous arguments yield convergence on y.

B.1.4 Proof of Proposition 3

(1) Suppose xS(An)y, which by definition means AyB∋yx exists. Due to AAT, y ∈
c (A) ⊆ Γ̃ (A) (B), and so c̃ (A) (B) = x implies u (x) > u (y).

(2) Since x, y ∈ X̂, Condition A.5 guarantees either CyE∋yx, which means xSy,

or DxF∋xy, which means ySx. Moreover, xSy and u (y) > u (x) jointly contradict

AAT, so xSy if and only if u (x) > u (y) for all x, y ∈ X̂, hence S is also asymmetric

and transitive on X̂.

(3) Suppose AAT representation (u,Γ) that represents c. Since X̂ is finite, enu-

merate the alternatives in X̂ by u (·) so that {x1, ..., xn} = X̂ and u (xi) < u (xi+1)

for all i. For each i, Condition A.2 guarantees existence of Ai such that c0 (Ai) = xi.

Now construct the sequence that begins with (A1, ..., An), followed by the finite

sequence of all possible binary choice problems (B1, ..., Bk) (in any order), with

arbitrary completion of what happens next (since (An) must be an infinite se-

quence). Note that c0 (A1) = x1. For j ∈ {2, ..., n}, if Γ̃ ((A1, ..., Aj−1)) (Aj) ⊆
Γ (Aj)∪{x1, ..., xj−1}, then c̃ ((A1, ..., Aj−1)) (Aj) = argmaxx∈Γ̃((A1,...,Aj−1))(Aj)

u (x) =

xj. By induction, this gives c ((A1, ..., An)) = X̂. Then, in the (B1, ..., Bk) phase,

either xS(An)y or yS(An)x for all x, y ∈ X̂ and x ̸= y. Since xS(An)y if and only if

u (x) > u (y) for all x, y ∈ X̂, S(An) is also asymmetric and transitive on X̂.

B.1.5 Proof of Proposition 4

Corollary 1. If c admits an AAT representation (Γ, u) and Γ∗ ⊆ Γ such that c0 (A) ∈
Γ∗ (A) for all A, then c also admits an AAT representation (Γ∗, u).
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Proof. Denote the resulting choices from (Γ∗, u) by c∗, c̃∗, and c∗. Consider h = ∅.

For A and y ∈ Γ∗ (A), since y ∈ Γ (A), so u (c̃ (∅) (A)) > u (y) if c̃ (∅) (A) ̸= y. Then

c̃ (∅) (A) ∈ Γ∗ (A) implies c̃∗ (∅) (A) = c̃ (∅) (A). Then, analogous arguments apply

to h ̸= ∅ inductively. For any history h, suppose c (h) = c∗ (h) (by induction). For

any A,

Γ̃∗ (h) (A) = Γ∗ (A) ∪ [A ∩ c∗ (h)] ⊆ Γ (A) ∪ [A ∩ c (h)] = Γ̃ (h) (A) .

So for any y ∈ Γ̃∗ (h) (A), since y ∈ Γ̃ (h) (A), so u (c̃ (h) (A)) > u (y) if c̃ (h) (A) ̸= y.

By AAT, either c̃ (h) (A) = c̃ (∅) (A) ∈ Γ∗ (A) or c̃ (h) (A) ∈ c (h) ∩ A = c∗ (h) ∩ A, so

c̃ (h) (A) ∈ Γ̃∗ (h) (A), so c̃∗ (h) (A) = c̃ (h) (A).

Only if: Fix c. Suppose c admits an AAT representation (Γ, u). Fix any A ∈
A. Suppose for contradiction y ∈ Γ (A) \Γ+ (A), so ySc0 (A) by definition of

Γ+, then by Proposition 3 (1) we have u (y) > u (c0 (A)). In this case, (Γ, u)

gives argmaxx∈Γ̃(∅)(A) u (x) ̸= c0 (A) a contradiction that (Γ, u) represents c. So

Γ (A) \Γ+ (A) = ∅, or Γ (A) ⊆ Γ+ (A). It is straightforward that c0 (A) ∈ Γ (A),

otherwise argmaxx∈Γ̃(∅)(A) u (x) ̸= c0 (A), a contradiction that (Γ, u) represents c.

If: Fix c. Suppose c admits an AAT representation (Γ, u). If z ∈ X\X̂, sup-

pose WLOG that u (x) > u (z) for all x ∈ X̂. By Corollary 1, (Γ∗, u) where

Γ∗ (A) = {c0 (A)} also represent c. Now I show that (Γ+, u) also represent c,

and then the proof is complete by invoking Corollary 1. Suppose for contradic-

tion there exist (An) and integer k such that the model predictions of (Γ∗, u) and

(Γ+, u) disagree. Let i∗ be the integer that represents the first disagreement in (An),

let h = (A1, ..., Ai∗−1), and denote the model predictions by, respectively,

a := argmax
x∈Γ̃∗(h)(Ai∗ )

u (x) and b := argmax
x∈Γ̃+(h)(Ai∗ )

u (x) .

Since this is the first disagreement in (An), c∗ (h) = c+ (h). Furthermore, since

Γ∗ (Ai∗) = {c0 (Ai∗)} ⊆ Γ+ (Ai∗) by construction, Γ̃∗ (h) (Ai∗) ⊆ Γ̃+ (h) (Ai∗). So the

disagreement is caused by b ∈ Γ+ (Ai∗) \ {c0 (Ai∗)}. Because u (b) > u (a), b ∈ X̂.

So by the definition of Γ+ we have c0 (Ai∗)Sb. By Proposition 3 (1) this implies

u (c0 (Ai∗)) > u (b), so it is impossible for (Γ+, u) to predict b.
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B.1.6 Proof of Proposition 5

Given (u,Γ) where Γ is an attention filter. Consider any h. If x /∈ Γ̃ (h) (B), then

x /∈ Γ (B) and x /∈ c (h). Note that x /∈ Γ (B) also implies Γ (B\ {x}) = Γ (B)

since Γ is an attention filter. So Γ̃ (h) (B\ {x})= Γ (B\ {x}) ∪ [(B\ {x}) ∩ c (h)]=

Γ (B) ∪ [B ∩ c (h)]= Γ̃ (h) (B). We established (1), and (2) is implied by definition.

B.1.7 Proof of Proposition 6

If: Since c admits an AAT representation, it satisfies Axiom 1, Axiom 2, and

Axiom 3 (Theorem 1). Suppose Γ is an attention filter. If c̃ (∅) (T ) = x and

c̃ (∅) (T\ {y}) ̸= x where x ̸= y, it must be that Γ (T ) ̸= Γ (T\ {y}), so y ∈ Γ (T )

since Γ is an attention filter. Then, since c̃ (∅) (T ) = x, u (x) > u (y). Since ySx
would have implied u (y) > u (x) due to Proposition 3 (1), not ySx. Hence Axiom 4.

Only if: Since c satisfies Axiom 1, Axiom 2 and Axiom 3, by Theorem 1 it admits

an AAT representation (Theorem 1). Consider another AAT representation where

the attention function is Γ+, guaranteed by Proposition 4. We show that Γ+ is

an attention filter. Suppose for contradiction there exists A and y such that y ∈
A\Γ+ (A) and Γ+ (A) ̸= Γ+ (A\ {y}). By the definition of Γ+, y /∈ Γ+ (A) implies

y ∈ X̂ and ¬c0 (A)Sy, and Proposition 3 (2) implies ySc0 (A). Next we argue that

c0 (A) ̸= c0 (A\ {y}). Suppose for contradiction c0 (A) = c0 (A\ {y}), then ySc0 (A)
and the definition of Γ+ would imply Γ+ (A) = Γ+ (A\ {y}), a contradiction. So

ySc0 (A) and c0 (A) ̸= c0 (A\ {y}), but they jointly contradict Axiom 4.

B.1.8 Proof of Proposition 7

Given (u,Γ) where Γ is a shortlist, let S be the corresponding rationale. Consider

any h. Define a new rationale S∗ ⊆ X ×X by xS∗y if xSy and y /∈ c (h). Then let

Γ̃∗ be the shortlist given by S∗. Finally we check that Γ̃∗ = Γ̃ (h). Fix any A ∈ A. If

y ∈ Γ̃ (h) (A), then either y ∈ Γ (A) (so ¬xSy for all x ∈ X) or y ∈ c (h) (so ¬xS∗y

for all x ∈ X), so y ∈ Γ̃∗ (A). If y ∈ Γ̃∗ (A), then ¬xS∗y for all x ∈ A, which by

definition of S∗ can be due to (i) ¬xSy for all x ∈ A, which means y ∈ Γ (A), or (ii)

y ∈ c (h). In either case, y ∈ Γ̃ (h) (A). We established (1), and (2) is implied by

definition.
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B.1.9 Proof of Proposition 8

Given (u,Γ) where Γ is a coarse-max, let S be the corresponding rationale. Consider

any h. Define a new rationale S∗ ⊆
[
2X\ {∅}

]
×
[
2X\ {∅}

]
with the following rules. If

R′SR′′, then let R′S∗R′′ if R′′∩c (h) = ∅ and let R′S∗ [R′′\c (h)] if R′′∩c (h) ̸= ∅. The

operation removes c (h) from categories that would be dominated, while forming

new categories R′′\c (h) that are dominated. Note that as a result, if R′S∗R′′, then

R′′ ∩ c (h) = ∅. Then let Γ̃∗ be the coarse-max defined by S∗. Finally we check that

Γ̃∗ = Γ̃ (h). Fix any A ∈ A. If y ∈ Γ̃ (h) (A), then either y ∈ Γ (A) (so ¬R′SR′′ for all

R′, R′′ ⊆ A and y ∈ R′′) or y ∈ c (h) (so ¬R′S∗R′′ for all R′′ ∋ y), so y ∈ Γ̃∗ (A). If

y ∈ Γ̃∗ (A), then ¬R′S∗R′′ for all R′, R′′ ⊆ A and y ∈ R′′, which by definition of S∗

can be due to (i) ¬R′SR′′ for all R′, R′′ ⊆ A and y ∈ R′′, which means y ∈ Γ (A), or

(ii) y ∈ c (h). In either case, y ∈ Γ̃ (h) (A). We established (1), and (2) is implied

by definition.

B.1.10 Proof of Proposition 9

If: Suppose yFc0
(
Ā
)

for some Ā = (A,F ) ∈ Ā and, for contradiction, ySc0
(
Ā
)
.

So u (y) > u
(
c0
(
Ā
))

by an adaption of Proposition 3 (1). But

c0
(
Ā
)
∈ Γ

(
Ā
)

and yFc0
(
Ā
)

(B.1)

imply y ∈ Γ
(
Ā
)
, so the choice without history from Ā cannot be c0

(
Ā
)

since y

brings greater utility and is considered, a contradiction.

Only if: The existence of an AATF representation (u∗,Γ∗) is given by Theorem 4.

If X̂ = X (there is no never chosen alternatives), let u := u∗. If X\X̂ = {z} (there

is at most one never chosen alternatives because all binary choice sets are in A), let

u := u∗ and then modify it by setting u (z) := minu (a)− 1. Given Ā = (A,F ) ∈ Ā,

let

Γ (A,F ) :=
{
c0
(
Ā
)}

∪
{
y ∈ A : yFc0

(
Ā
)}

. (B.2)

For each y ̸= c0
(
Ā
)

included into consideration, there are two possibilities. If

y /∈ X̂, then u (y) < u (z) for all z ∈ X, so including y into consideration when c0
(
Ā
)

is also considered does not affect choice. If y ∈ X̂, an adaption of Proposition 3 (1)

guarantees that either ySc0
(
Ā
)

or c0
(
Ā
)
Sy, but Axiom 8 rules out the former, so
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c0
(
Ā
)
Sy, which implies u

(
c0
(
Ā
))

> u (y), hence including y into consideration

when c0
(
Ā
)

is also considered does not affect choice. By construction, Γ satisfies

the desired properties.

B.1.11 Proof of Proposition 10

If: The same as the proof of Proposition 9 except that Equation B.1 is replaced

by y ∈ F (A). Only if: The same as the proof of Proposition 9 except that Equa-

tion B.2 is replaced by Γ (A,F ) :=
{
c0
(
Ā
)}

∪ {y ∈ F (A)} and Axiom 8 is replaced

by Axiom 9.

B.2 Omitted Examples and Results

Example 12. This example discusses the empirical test of the convergence property

introduced in Subsection 3.2. Consider a population of DMs, each with a (deter-

ministic) AAT representation. For choice sets {{x, y, z} , {x, y}}, there are 189 sets

of relevant (u,Γ) parameters (due to 9 variations in preferences and 21 variations

of preferences). Instead of brute-forcing it, let’s categorize the DMs using what

they would choose in the first period, which creates a partition of these 189 sets

using observable differences. Let Pij be the fraction that would have chosen i from

{x, y, z} and j from {x, y} when they encounter these choice sets in the first period;∑
i∈{x,y,z},j∈{x,y} Pij = 1. Within the Pxy fraction, let λxy be the fraction that prefers x

to y and (1− λxy) the fraction that prefers y to x; preference for z is irrelevant since

DMs in this group will never choose z in the problems we consider (see Proposi-

tion 2). Define λyx similarly. For the Pzx fraction, let λzx be the fraction that prefers

x to z and (1− λzx) the fraction that prefers z to x. For the Pzy fraction, let λzy be

the fraction that prefers z to y and (1− λzy) the fraction that prefers y to z.

Now consider a random assignment of the population of DMs into two groups

(treatments). In group A, DMs first choose from {x, y, z} (first period) and then

choose from {x, y} (second period). In group B, {x, y} first and {x, y, z} second.

Suppose for now Pzx = Pzy = 0, for instance when z is a dominated alternative /

decoy. Note that if every DM has full attention, then Pxy = Pyx = 0, but we do not

assume this.

In group A, for first period’s choice (from {x, y, z}), Pxx+Pxy fraction chooses x

and Pyy+Pyx fraction chooses y, with relative fraction of x to y being Rt=1
A = Pxx+Pxy

Pyy+Pyx
.
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Similarly, in group B, for first period’s choice (from {x, y}), Rt=1
B = Pxx+Pyx

Pyy+Pxy
. If

Pxy = Pyx = 0, then Rt=1
A = Rt=1

B , so Rt=1
A ̸= Rt=1

B means some DMs have limited

attention.

Now we consider second period’s choices. In group A, for the second period

choice (from ({x, y}), AAT predicts that the Pxx fraction and the Pyy fraction will

continue to choose x and y respectively, but the Pxy fraction and the Pyx fraction

now consider both x and y and choose according to their preferences; for example,

for the Pxy fraction, λxy fraction will choose x and (1− λxy) fraction will choose y

(see Proposition 2). The same holds for group B. As a result, relative fractions of x

to y for group A and group B both equal

Rt=2
A = Rt=2

B =
Pxx + Pxyλxy + Pyxλyx

Pyy + Pxy (1− λxy) + Pyx (1− λyx)
. (B.3)

So Rt=2
A = Rt=2

B = Rt=2, i.e., convergence, even if Pxy, Pyx > 0.

If we assume that the Pxx fraction and the Pyy fraction genuinely prefer x and

y respectively, then Rt=2 reveals the overall fraction of DMs who genuinely prefers

x relative to the overall fraction of DMs who genuinely prefers y. In general, it is

possible that a DM belonging to the Pxx fraction actually prefers y to x but never

considers y.

Now suppose Pzx, Pzy > 0. If we recalculate Rt=2
A and Rt=2

B , they become

Rt=2
A =

...+ Pzx

...+ Pzy

, Rt=2
B =

...+ Pzxλzx

...+ Pzy (1− λzy)
, (B.4)

where ... follow Equation B.3, so in general Rt=2
A ̸= Rt=2

B . This occurs due to dis-

tributional differences in preferences parameters, and it would occur even with a

population of fully standard DMs (i.e., Pxy = Pyx = 0 and λzx = (1− λzy) = 0).

But this richer dataset provides a solution! In group A, Pzxλzx fraction will exhibit

choices (z, x), and Pzy (1− λzy) fraction will exhibit (z, y). In group B, Pzx (1− λzx)

fraction exhibits (x, z) and Pzy (λzy) fraction exhibits (y, z). So data allows us to pin

down Pzx, Pzy, λzx, λzy, hence we can check if Equation B.4 holds!

Example 13. Let X = {x, y, z}. Consider (u1,Γ1) where u1 (x) > u1 (y),

{A : y ∈ Γ1 (A)} = {{x, y, z}}, Γ1 ({x, y, z}) = {y}, Γ1 ({x, y}) = {x}, then x, y ∈ X̂

and any sequence (An) such that xS(An)y must present {x, y, z} before {x, y}. Now

consider (u2,Γ2) where u2 (x) > u2 (y), {A : y ∈ Γ2 (A)} = {{x, y}}, Γ2 ({x, y}) =
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{y}, Γ2 ({x, y, z}) = {x}, then x, y ∈ X̂ and any sequence (Bn) that reveals xS(Bn)y

must present {x, y} before {x, y, z}.

Example 14. The following C is not compatible with AAT: Let X = {1, 2, 3, 4}.

Suppose C consists of all WARP-conforming choice functions (to make this exam-

ple non-trivial) and, additionally, a single choice function f where f ({1, 2}) = 1,

f ({2, 3}) = 2, f ({3, 4}) = 3, f ({4, 1}) = 4, f ({1, 2, 3}) = 3, f ({2, 3, 4}) = 4,

f ({3, 4, 1}) = 1, and f ({4, 1, 2}) = 2 (the other choice sets are irrelevant). No

other choice functions are in C. Suppose for contradiction that C is compatible

with AAT. To accommodate f , by the symmetry of f , suppose without loss of gen-

erality u (1) > u (2) > u (3) > u (4). After history h = ({2, 3}), 2 ∈ Γ̃ (h) (A) if 2 ∈ A,

but this does not change the choices f̃ (h) ({4, 1, 2}) = 2 and f̃ (h) ({1, 2}) = 1,

so f̃ (h) violates WARP and f̃ (h) ̸= f , hence f̃ (h) /∈ C, a contradiction that C is

compatible with AAT.

Corollary 2. Suppose X is finite. There exists a sequence of choice sets (An) ∈ AN such
that for any c that admits an AAT representation, there exists a subset of alternatives
X̄c ⊆ X such that S(An) on X̄c is a strict total order and

∣∣X\X̄c

∣∣ ≤ 1.

Proof. We prove by construction. Consider any sequence (An) that begins with the

finite sequence of all possible binary choice problems (B1, ..., Bk) (in any order)

and then repeats itself, with arbitrary completion of what happens next (since (An)

must be an infinite sequence). Now consider any c. Note that all but at most one

alternative would have been chosen in the first iteration of (B1, ..., Bk) (if z is not

chosen, then all other alternatives have been chosen, so z is the only alternative

that has not been chosen), denote this set by X̄c. Then, during the repetition of

(B1, ..., Bk), either xS(An)y or yS(An)x for all x, y ∈ X̄c and x ̸= y. Moreover, since c

admits an AAT representation, due to Proposition 1 and X̄c ⊆ X̂, we have xS(An)y

only if u (x) > u (y). Hence S(An) is also asymmetric and transitive.

Corollary 3. If c admits AAT representations (Γ, u) and (Γ′, u), then it also admits
AAT representations (Γ ∪ Γ′, u) and (Γ ∩ Γ′, u).

Proof. The case for intersection is shown in Corollary 1; note that an intersection

between Γ and Γ′ guarantees that Γ∗ := Γ ∩ Γ′ satisfies Γ∗ ⊆ Γ and c0 (A) ∈ Γ∗ (A)

for all A. For the case for union, the “only if” of Proposition 4 guarantees that

c0 (A) ∈ Γ (A) ⊆ Γ+ (A) and c0 (A) ∈ Γ′ (A) ⊆ Γ+ (A), and the “if” part subsequently
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guarantees (Γ∗, u∗) where Γ∗ = Γ∪Γ′ is an AAT representation for the same behavior

c. If u ̸= u∗, then by Proposition 1, X\X̂ = {z} and u (z) > u (x) for some x ∈ X̂

(the proof of Proposition 4 constructs u∗ using u (x) > u (z)). But since (Γ, u) , (Γ′, u)

both represent c, if c0 (A) = x, then z /∈ Γ (A)∪Γ′ (A), so (Γ∗, u) also represent c.

Corollary 4. Suppose c admits an AAT representation (u,Γ) and suppose c0 is ex-
plained by some strict total order (≻0, X) (i.e., c0 (A) ≻0 z for all z ∈ A\ {c0 (A)}).
There exists history h such that c̃ (h) violates counterfactual WARP if and only if there
are x, y, z ∈ X̂ such that z ≻0 x ≻0 y but u (x) > u (y) > u (z).

Proof. If: This is given by Example 2, with c0 ({y, z′}) = y replaced by c0 (A) = y

for some A, which is guaranteed by y ∈ X̂ and Condition A.2. Only if: Suppose

c0 satisfies counterfactual WARP and c̃ (h) fails counterfactual WARP for some h ∈
A<N. So there exist x, y ∈ X and A,B ∈ A such that {x, y} ⊆ A ∩ B, c̃ (h) (A) = x,

and c̃ (h) (B) = y. Suppose WLOG c̃ (h)({x, y}) = x. We will separately demonstrate

u (x) > u (y), u (y) > u (c0 (B)), c0 (B) ≻0 x, and x ≻0 y, which completes the

proof. Note that c0 ({x, y}) = x; otherwise, c0 ({x, y}) = y implies y ∈ Γ ({x, y}) ⊆
Γ̃ (h) ({x, y}), so c̃ (h) ({x, y}) = x means u (x) > u (y) and x ∈ c (h), but then

c̃ (h) (B) = y is a contradiction. This means x ≻0 y. Also, since c0 satisfies WARP

and x ∈ B, c0 (B) ̸= y, so the only way we have c̃ (h)(B) = y is u (y) > u (c0 (B))

and y ∈ c (h), which also means c0 (B) ̸= x. Because c0 satisfies WARP, c0 (B) ≻0 x

and c0 (B) ≻0 y. Finally, y ∈ c (h) and c̃ (h)({x, y}) = x imply u (x) > u (y).
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